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Abstract

This thesis consists of three parts. In the first part, we report on laboratory experiments

on Taylor bubbles in downward pipe flow and subsequent reconstruction of a three dimen-

sional shape of bubbles. The pipe is enlightened by a laser sheet perpendicular to the vertical

pipe axis. The bubble crossing the laser sheet is filmed by a high-speed camera. Our laser

measurements reveal that the bubble shapes in the horizontal plane perpendicular to the

pipe axis are not concave, but exhibit a depression in their centres. Unlike the velocity of

asymmetric bubbles, we find that the shape of the bubbles projected onto the axial plane

depends on a mean velocity of the downward flow, with asymmetric bubbles becoming more

tapered at larger flow rates. We address a simple inviscid model to explain this dependence.

In the second part, we model the solidification and phase-change-driven flow in a ternary

alloy cooled from a planar boundary. The liquid and solid phases are separated by a sharp

interface. The model incorporates a fluid flow in the liquid region due to shrinkage/expansion

during the phase change. We derive self-similar solutions for the temperature field, compos-

ition fields and the interface location, and perform an asymptotic analysis in the limit of the

large Lewis numbers. In the case of binary systems, the two asymptotic regimes are known

in the limit of large Lewis number. One controlled by the thermal diffusivity and one con-

trolled by the solutal diffusivity. In the case of ternary systems studied here, we find that the

presence of the second solute leads to eight asymptotic regimes. We identify the material and

experimental parameters for which these regimes occur. The results indicate that a sufficient

difference in the two solutal diffusivities accounts for the difference in the segregation of the

two solutes in the solid phase. We find that a shrinkage upon freezing enhances the solidific-

ation rate if the system solidifies in the regime controlled by the thermal diffusivity, but it

slows down the solidification rate if the system solidifies in the regime controlled by one or

two solutal diffusivities. The expansion has the opposite effect on the rate of solidification in

the regimes controlled by either thermal or solutal diffusivities. We also examine the onset

of the marginal constitutional supercooling (MCS) in the liquid region above the solid/liquid

interface. With the requirements of the MCS not to occur, we identify two novel regimes

of solidification in which the system solidifies at a very slow rate. We also provide numer-

ical results which show different effects of the segregation coefficients and the double-solutal

diffusive effects on the onset of the MCS.

Finally, in the third part, we propose a one-dimensional model for solidification of super-

cooled liquids in a finite domain. The classical Stefan-type two-phase model of freezing is

extended to account for the kinetic effects at the front separating the solid and liquid phases.
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A direct numerical simulation of the model reveals different stages of freezing dynamics:

the initial stage dominated by the interfacial attachment kinetics, the intermediate quasi–

equilibrium stage, and the late stage dominated by the finite-domain effects. Asymptotic

solutions in the limit of small initial supercooling are derived and compared with numerical

calculations for the full model.

Key words: Taylor bubbles, asymmetric bubbles, solidification of ternary alloys, super-

cooled solidification, self-similar solutions, asymptotic approximations

AMS classification: 80A22, 76M45, 35C20
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Abstrakt

Dizertačná práca pozostáva z troch čast́ı. V prvej časti prezentujeme výsledky našich

laboratórnych experimentov s Taylorovými bublinami pohybujúcimi sa vo vertikálnej tru-

bici za pŕıtomnosti laminárneho toku v smere nadol. Zo źıskaných experimentálnych sńımok

následne rekonštruujeme trojrozmerný tvar pozorovaných bubĺın. Trubica je osvetlená laser-

ovou rovinou kolmou na vertikálnu os trubice. Bubliny prechádzajúce cez laserovú rovinu

sú nafilmované vysokorýchlostnou kamerou. Naše laserové merania odhalili, že tvar bubliny

v horizontálnej rovine nie je konkávny, ale vykazuje depresiu v okoĺı stredu bubliny. Zistili

sme, že na rozdiel od rýchlosti asymetrických bubĺın, tvar bubĺın projektovaný na rovinu

rovnobežnú s osou trubice záviśı na strednej rýchlosti toku smerujúceho nadol, v ktorom sa

bubliny pohybujú. Asymetrické bubliny majú väčšiu krivost’ pri vyšš́ıch rýchlostiach toku.

Prezentujeme aj jednoduchý neviskózny model, ktorý vysvetl’uje túto závislost’.

V druhej časti modelujeme proces tuhnutia a tok hnaný expanziou a kontrakciou v

ternárnom systéme tuhnúcom z pevného rozhrania. Kvapalná a tuhá fáza sú oddelené

rovinným rozhrańım. Model zahŕňa tok v kvapalnej oblasti, ktorý vzniká v dôsledku expanzie

alebo kontrakcie pri fázovej premene. Odvádzame sebepodobné riešenia pre teplotné pole,

koncentračné polia a polohu rozhrania. Následne prevádzame asymptotickú analýzu v limite

vel’kých Lewisových č́ısel. V pŕıpade binárnych systémov sú známe dva asymptotické režimy v

limite vel’kého Lewisovho č́ısla. Jeden kontrolovaný tepelnou difuzivitou a jeden kontrolovaný

difuzivitou pŕımesi. V pŕıpade ternárnych systémov študovaných v tejto práci sme zistili, že

pŕıtomnost’ druhej pŕımesi prináša osem asymptotických režimov. Určujeme materiálové a ex-

perimentálne parametre, pre ktoré sa tieto režimy objavujú. Výsledky ukazujú, že dostatočne

vel’ký rozdiel v difuzivitách pŕımeśı má za následok rozdielnu segregáciu týchto pŕımeśı v tuhej

fáze. Zistili sme, že kontrakcia pri tuhnut́ı urýchl’uje jeho rýchlost’, ak systém tuhne v jed-

nom z režimov kontrolovaných tepelnou difuzivitou a naopak spomal’uje tuhnutie, ak systém

tuhne v jednom z režimov kontrolovaných jednou alebo oboma difuzivitami pŕımeśı. Expan-

zia pri fázovej premene má opačný efekt na rýchlost’ tuhnutia pri režimoch kontrolovaných

teplotnou difuzivitou alebo difuzivitou pŕımesi. Tiež preskúmame objavenie sa marginálneho

konštitučného podchladenia (z angl. MCS) v kvapalnej oblasti nad rozhrańım tuhej a kvap-

alnej fázy. Pri požiadavke, aby sa MCS neobjavilo, identifikujeme dva nové režimy tuhnutia,

v ktorých systém tuhne vel’mi pomaly. Poskytneme tiež numerické výsledky, ktoré ilustrujú

rozdielny efekt segregačných koeficientov a rôznej difuzivity pŕımeśı na objavenie sa MCS.

Na záver, v tretej kapitole navrhujeme jednorozmerný model pre tuhnutie podchladenej

kvapaliny v konečnej oblasti. Klasický Stefanov problém tuhnutia s dvoma fázami je rozš́ırený
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tak, že zahŕňa kinetické efekty na rozhrańı oddel’ujúcom tuhú a kvapalnú fázu. Priama

numerická simulácia modelu vykazuje rôzne fázy dynamiky tuhnutia: počiatočnú fázu v ktorej

dominujú kinetické efekty na fázovom rozhrańı, strednú kvázi-rovnovážnu fázu a záverečnú

fázu, v ktorej dominujú efekty spojené s ohraničenost’ou oblasti. Odvod́ıme asymptotické

riešenia v limite malých počiatočných podchladeńı a porovnáme ich s numerickými výpočtami

pre plný model.

Kl’́učové slová: Taylorove bubliny, asymetrické bubliny, tuhnutie ternárnych zmeśı, tuh-

nutie za pŕıtomnosti podchladenia, sebe-podobné riešenia, asymptotické aproximácie

AMS classification: 80A22, 76M45, 35C20
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1 Reconstruction of fast Taylor bubble shapes

This section is based on our work presented as a poster at the 17th Multiphase Flow

Conference & Short Course, Dresden, 2019 [8].

1.1 Introduction

Flows of aerated liquid in the vertical pipe attract wide interest of researchers in both

scientific and technical applications. A common pattern occurring in such flows are the Taylor

bubbles – elongated bullet-shaped bubbles. Pioneering work on Taylor bubbles rising in the

stagnant liquid was done by Dumitrescue in [16] and by Davies and Taylor [13]. Both studies

involved theoretical prediction on the shape of the bubble tip, based on the inviscid theory.

In [13] an attempt was made to predict the bubble velocity in the stagnant liquid by the

formula vD = k
√
gD, where g is the gravitational acceleration, D is the pipe diameter. Later

experiments ([36], [39], [9]) specified the value of k to be 0.33–0.36.

The Taylor bubble velocity vb in the liquid flowing with the velocity vL was determined

in the study of Nicklin et al. [36] to be:

vb = C0vL + vD, (1.1)

where C0 is the constant typically considered 1.2 for laminar and 2 for the turbulent flow

[17]. In the upward fluid flow a bubble posses symmetrical shape. The movement of the

symmetrical bubble is described by the Nicklin equation (1.1). In the downward flow, the

bubble do not always posses the symmetrical shape. As reported in the early experimental

studies [22] and [35], for downward fluid flow velocity below the certain critical value, fast

elongated asymmetric bubbles occur.

In [34] Mao and Duckler built the numerical model for a symmetric bubble rising in the

vertical pipe with the upward fluid flow. The model incorporated the effect of the surface

tension. As pointed out it has negligible effect on the bubble shape, but is crucial for de-

termining the bubble velocity. For zero surface tension there exist multiple solutions for the

bubble velocity, each corresponding to the different shape. The requirement of the non-zero

surface tension implies that the bubbles nose has a spherical shape and ensures one solution

for the bubble velocity. Later, the study of Fabre and Figueroa-Espinoza [20] was dedicated

to a planar bubble rising in the channel with flowing liquid. Both downward and upward

flows were allowed in their model. For the sufficiently large flow velocity, the transition of

the bubble from the symmetric to the steady asymmetric mode was observed. Even thought

the bubble transits to the asymmetric mode, it is not attached to the channel wall. There
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is always a liquid film present between the bubble and the channel wall. The bubble shape

becomes more pointed as the downward flow increases. In the numerical study of Lu and

Prosperetti [33] the axisymmetric elongated bubble rising in the vertical water-filled chan-

nel was modelled. Predicted fluid flow velocities around the bubble nose showed very good

agreement with the particle image velocimetry (PIV) measurements of Bugg and Saad [3].

Lu and Prosperetti [32] performed a linear stability analysis of the elongated bubble shape

in the downward fluid flow. For the base flow, they used the same approximation as addopted

by Collins et al. in [10], in which the viscosity effects are accounted only through the non-zero

vorticity of the base flow. The linear perturbation is considered to be irrotational. The main

result presented in [32] is that the symmetrical shape becomes unstable for the downward

flow velocity lower than −0.13
√
gD.

Recently two experimental studies [17] and [19] systematically investigated the fast asym-

metric elongated bubbles present in the downward fluid flow. In [17], Fabre and Figueroa-

Espinoza used three different fluids and provided results on the bubble shape and velocity

for different mean flow velocities and surface tension parameters. For small surface tensions

and the mean flow velocity below a critical value specified in [32], they observed the fast

asymmetric bubbles rising with the velocity 0.4
√
gD for a wide range of the downward mean

flow velocities. This independence of the bubble velocity of the flow velocity is in strong

contradiction to the linear relation (1.1) valid for the symmetric bubble moving in the ver-

tical fluid flow, where the bubble velocity decreases with decreasing fluid flow velocity. More

recently, Fershtman et al. [19] studied the shapes and velocity of the elongated bubble in

the downward fluid flow also confirming the critical velocity of the downward fluid flow pre-

dicted in [32]. The stable asymmetric mode they observed exists only for the limited time

after the flow is initiated. They also provided a theoretical prediction for the time of the

onset and duration of the asymmetric mode, which was found to be in agreement with their

measurements.

The aim of the present study is to experimentally investigate the shape of the asymmetric

elongated bubble observed in [19]. The paper is organised as follows: in §1.2 we describe the

experimental facility and experimental technique used to obtain the bubble shape. Before we

proceed to investigate the asymmetric mode we apply the laser method to the well-known

symmetric case. In §1.4 we present a simple inviscid model for the prediction of the bubble

shape for the given bubble velocity and downward fluid flow velocity. In §1.5 we present the

results for the measurement of the bubble shape in the asymmetric mode. Finally in §1.6 we

give the conclusions.
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1.2 Experimental facility and procedure

1.2.1 Experimental facility

Measurements conducted in [19] showed that axisymmetric Taylor bubbles, under the

presence of the sufficiently large downward flow, transit to the steady asymmetric mode. In

the presented work we experimentally examine the shapes of these elongated asymmetric

bubbles. Schematic diagram of our experimental facility is depicted in Figure 1. Water is

pumped from the bottom reservoir to the upper reservoir and flows down through the vertical

Perspex pipe against the rising bubble. The internal radius of the pipe is Rp = 22 mm and the

length of the pipe is 6 m. To ensure a symmetric and smooth entrance of the water into the

pipe, the upper reservoir consists of a large settling chamber, a honeycomb and a converging

nozzle. The flow rate is determined by three Fischer-Porter rotameters with the maximum

flow rates 3.80 l/min (0.228 m3/h), 22.9 l/min (1.376 m3/h), and 66 l/min (4 m3/h) and an

accuracy 1.6% of their full scale. Mean downward flow rates in the conducted experiments

were below 0.5 m s−1. To avoid the deformation of an image due to the cylindrical shape of

the pipe, part of the pipe in the measurement section is enclosed in a transparent plastic box.

The space between the box walls and the pipe is filled with the water.

Individual bubbles were injected from the air chamber, where the air is pressurised. In-

jection is controlled by the computer connected to the injection valve. The length of the

investigated bubbles is up to 30 cm.

To reconstruct the bubble shape, we use the laser beam transformed to the laser sheet

using the line generator. The tube is crossed by the laser sheet as shown in Figure 3. We also

take snapshots of the bubble from the side (see Figure 2). Such method is simple, however

it does not provide the possibility to reconstruct the shape of the bubble. The frame rate of

the video camera used is 180 fps.

1.3 Procedure

Initially, a symmetric Taylor bubble is injected into the vertical pipe. The downward flow

is introduced only after the bubble is in the steady position in the middle of the pipe. After

the time experimentally determined in [19] the bubble transits to the asymmetric mode.

Series of snapshots is taken when the asymmetric bubble is crossing the laser sheet. To

test our laser measurement technique of the bubble shape, we first analysed axisymmetric

Taylor bubble. The sample image is shown in Figure 4(a).

Processing of the image was performed in the following four steps 1. snapshots were taken

with the camera (Figure 4(a)), 2.perspective transformation was made (Figure 4(b)), 3. the
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Figure 1: The experimental facility: 1, bubble injection valve; 2, flowmeter, 3, pump; 4,

bottom water reservoir; 5, laser source; 6, laser sheet; 7, bubble crossing the laser sheet; 8,

box encapsulating the pipe; 9, side view camera perpendicular to the pipe; 10, perspective

camera; 11, upper water reservoir with honeycomb and converging nozzle.
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(a) (b)

Figure 2: Sample images of the bubble in (a) the symmetric and (b) the asymmetric modes.

Figure 3: Sample image of the empty tube crossed by the laser sheet
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bubble edge was detected (Figure 4(c)), 4. the detected bubble edge was extracted (Figure

4(d)). We note that to make the bubble edge easier to distinguish we transformed all the grey

pixels bellow a specific threshold to black and all the pixels with the larger value to white

on the raw image. To detect the bubble edge on the obtained images we used Canny edge

detection algorithm developed by J. Canny [4] and implemented in Python library OpenCV

by the command Canny(). On some images, there are many reflections as can be seen e.g.

in Figure 7(a). In such cases we marked the bubble edge manually on the transformed image

and consequently extracted the edge.

We see that in the final Figure 4(d) the distance of the bubble edge from the pipe wall

corresponds to the thickness of the gap between the bubble and the pipe in Figure 2(a).

The apparent discontinuity in the pipe wall in the Figures 4(a–c) is caused by the non-zero

thickness of the pipe wall.
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(a) (b)

(c) (d)

Figure 4: Steps of the image processing in the laser method. Axisymmetric bubble is shown

on the images. (a) Raw image (b) image modified by the perspective transformation, (c)

detected bubble edge marked with the circles and (d) obtained bubble edge is plotted to the

final figure.

1.4 Inviscid model

Here we formulate a simple inviscid model from which we can deduce the bubble shape

as viewed from the side. Schematic of an asymmetric elongated air bubble rising in the

downward flow is depicted in Figure 5.

We formulate the global model in the frame of reference, in which the bubble is stagnant.

The average cross–sectional fluid velocities at heights A and B are

vA,B = vb + vdA,B, (1.2)

where vb is the bubble velocity in the laboratory frame of reference and vdA,B are the down-
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(a)

(b)

(c)

Figure 5: Schematic of the elongated air bubble rising in the pipe against the downward fluid

flow. (a) The bubble as viewed from the side. Sample bubble horizontal cross-section at

height h below the bubble top under the assumption of the (b) circular and (c) non-circular

bubble edge.

ward fluid velocities at heights A and B in the laboratory frame of reference.

The model is described by the following equations:

Zero pressure drop: pA = pB (1.3)

Continuity equation: vAAA = vBAB (1.4)

Bernoulli’s equation:
1

2
ρv2
A + ρghA + pA =

1

2
ρv2
B + ρghB + pB, (1.5)

where ρ is density of the fluid, p is the fluid pressure, h is the vertical distance measured from

the bubble top, A is the cross sectional area occupied by the fluid and g is the gravity accel-
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eration. Lower index A indicates the upper position and index B lower position. Combining

equations (1.3)–(1.5) yields

h (xB) =
1

2g
v2
A

((
πD2

4AB

)2

− 1

)
, (1.6)

where AB is the bubble cross-section corresponding to the distance xB (see Figure 5). We

computed AB numerically for the shape of the bubble obtained from the experiment. For

the side view of the bubble, the shape of the cross-section is unknown. Therefore the circular

shape of the bubble was assumed (see Figure 5(b)), with the bubble cross-sectional radius

Rb being an additional input parameter. If the cross-sectional shape of the bubble is known,

which is the case for the experiments with the laser sheet enlightening the bubble from the

front side, we might calculate the cross–section directly from the experimental data. In that

case xB is considered to be the leftmost point of the given cross–section (see Figure 5(c)).

We note that the bubble velocity is not determined by the model. We use the experimentally

measured bubble velocity as one of the input parameters to the model.

In the section 1.5 we compare the shape given by the equation (1.6) with the experiment-

ally obtained bubble shape.

1.5 Results

In [37] was showed that bubble shape and motion is only affected by the fluid flow ahead

of the bubble. Our measurement of the edge of the bubble in the asymmetric mode from

the side view confirms this fact. Edges of the bubbles with different volumes as seen from

the side overlap, as can be seen in Figure 6(a). Furthermore, bubble is more pointed for the

larger values of the downward fluid flow (see Figure 6(b)). We note that the bubble shape

is constant in time and remind unchanged also for the different height at which the bubble

image is obtained.

Same as in the case of the symmetric bubble, we have processed the images obtained when

the bubble was in the asymmetric mode. Time laps for the bubble in the asymmetric mode

crossing the laser sheet is showed in the 7. So far, we had not been capable of reconstructing

the bubble top. At the time when bubble tip is crossing the laser sheet, there are a lot of

reflections in the images and is hard to determine the bubble edge position precisely. On the

other hand the bubble interface is clear in the middle and the bottom part of the bubble. Our

laser measurements revealed that the cross–section of the bubble in the asymmetric mode is

not circular, but there is an unexpected change in the bubble shape (see Figure 7). Possibly

this reflects the profile of the downward fluid flow, which is strongest on the pipe central axis.
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Figure 6: Bubble edge detected from the side view images. a) Overlapping bubble edges

extracted from the side view images. Different colours denote different bubble lengths. Flow

rate is vd = 0.30 m s−1. b) Edges of the two bubbles with the same length for the two different

flow rates: vd = 0.13 m s−1 and vd = 0.30 m s−1. Bubble is more pointed for the larger flow

rate.

Here we compare the data of the bubble shape obtained by laser measurements and the

side view images with the theoretical prediction for the bubble shape given by the equation

(1.6). The experimental data obtained from the side view images are plotted in Figure

8(a) (dots). To calculate the cross-section AB in (1.6) we supposed that Rb = 10Rp, which

corresponds to the flat bubble. The assumption of the flat cross-section of the bubble is in

the agreement with the laser measurements showed in Figure 7.

The single points in Figure 8(b) represent the lowest points of the corresponding bubble

cross–section (see Figure 7). We calculated AB(xB) directly from the laser measurement

data, for each frame. The equation (1.6) is than used to plot the solid curve in Figure 8(b).

To show that data obtained independently by the laser measurements and the bubble

images coincide, we displayed them in one plot in Figure 8(c).
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Figure 7: Bubble crossing the laser sheet in four consecutive frames. In the left column are

depicted the raw images from the high-speed camera. In the right column are depicted the

bubble edges, detected from the images. At the first image, bubble tip is crossing the laser

sheet. At the second and third image we see the depression in the bubble centre. At the last

image, corresponding to the bottom of the bubble, the depression is not present.
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Figure 8: Comparison of the bubble shape obtained from: (a) the side view and laser meas-

urements, (b) the side view experiments and the theory, and (c) the side laser measurements

and from the theory. The theoretical curves are plotted based on equation (1.6).

Figure 8(c) indicates that the laser measurements give the same results for the bubble edge

as viewed from the side as the side view images. Another way to justify the reconstruction

of the bubble shape by the laser method, is to verify that the volume of the bubble in the

symmetric and the asymmetric mode is the same. We made the photo of the bubble in the

symmetric and in the asymmetric mode. Under the assumption of the cylindrical symmetry

of the bubble we calculated the bubble volume numerically. For the bubble in the asymmetric

mode, we measured the bubble edge as the bubble moved thought the laser sheet. Sample

bubble edge is depicted in Figure 7. We calculated the volume of the bubble Vb using the

formula Vb =
∑

iAivb/f , where Ai is the cross-sectional area of the bubble, vb is the bubble

velocity and f is the frame rate of the camera. For the 17 cm long bubble, we calculated the

volume 0.108 l for the symmetric bubble and 0.110 l for the asymmetric bubble. We see that

the values are in very good agreement.

1.6 Discussion

We have reconstructed the shape of the fast asymmetric elongated air bubbles in the

vertical pipe under the presence of the downward fluid flow. To produce the fast asymmetric
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elongated bubbles we used the same procedure as in [19] – downward flow was initiated after

the bubble was rising in the stagnant water in the steady position in the middle of the pipe.

To justify the precision of our laser method, we have reconstructed the shape which would

be observed if viewed from the side based on the laser measurements. Consequently we have

compared it to the side view image, obtaining good agreement. We have also calculated the

volume of the bubbles in the symmetric and asymmetric mode for the given injection time.

Calculated volumes of the bubbles in the asymmetric mode have showed good agreement

with the volumes of the bubbles in the symmetric mode, produced during the same injection

time.

Laser measurements have revealed that the bubble cross-section in the plane perpendicular

to the pipe axis is not concave, but there is a depression in the bubble shape reflecting the

strongest flow in the middle of the pipe. Despite the fact that the velocity of the asymmetric

bubble does not depend on the downward fluid flow, we found change in the shape of the

bubble with the flow velocity. For the larger flow rate, asymmetric bubble is more tapered.

We have presented the simple inviscid model, from which we were able to deduce the

bubble shape. Predicted bubble shape is in agreement with our experimental method.
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2 Solidification of a ternary alloy with density change effects

2.1 Introduction

In recent decades, a lot of research was dedicated to investigate the solidification processes

of binary (see e.g. [14], [2]) and multicomponent mixtures. This research is motivated by a

wide spectrum of natural and industrial processes. In nature, such processes include solidific-

ation in the Earth’s core, ice shelf formation and sedimentation in magma lakes. Examples of

similar processes in the industry include casting of multicomponent metal alloys [12], phase-

change proceses at the nanoscale ([25], [26]), and ice-templating [15]. The technologies are

extensively studied due to their importance in producing novel materials.

Worster [40] investigated self-similar model of diffusion-controlled solidification from the

cooled boundary. He presented two models for the solidification of the binary system. One

with the planar solid/liquid interface and second with the mushy zone. Results of the model

were in agreement with the experimental data for the aqueous solution of H2O–NaNO3 ob-

tained by Huppert and Worster [27]. Chiareli and Worster [7] included a partial solute

rejection and a flow due to contraction/expansion during phase change to the model. The

flow alter macrosegregation and has an effect on the morphological stability of the system.

Different self-similar model is the one investigated by Kyselica and Guba [30]. The work

studies solidification of the binary alloy with a non–plannar interface over the horizontally

moving substrate. They found a self-similar solution involving strong two-dimensional fluid

flow in the limit of small Prandtl number, which is the typical case for the metal alloys.

Asymptotic regime of a small ratio of the square root of the far-field velocity and the moving

substrate velocity was investigated. They showed that the height of the solid is of the order

of this ratio. The thermal and the compositional boundary layers are both stretched by the

factor inversly proportional to the velocity ratio. Kyselica, Guba and Hurban [31], included

mushy zone to the model and found out that the thickness of both solid and the mushy

regions were of the unit order. In this section we address the problem of solidification of the

ternary alloy with the planar interface from a cooled boundary. We focus on the solidification

controlled by diffusion of solute(s) with a different diffusion coefficient of each solute. We have

been able to predict novel regimes of solidification, unique for the ternary alloys solidification.

Our model includes the liquid flux due to contraction/expansion during the phase change.

The model is a natural extension of the model for binary alloys, by Worster and Chiareli [7]

to the ternary case.

This section is organized as follows. In §2.2 we formulate the problem. We find the

solutions underlying the model in a self-similar form. This approach enables us to transform
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the set of the governing differential equations to the set of algebraic equations. In §2.4 we use

asymptotic methods to determine the material and experimental parameters for which the

solidification process is controlled by the specific diffusivity of solute(s) or heat diffusivity. In

each of this regimes we determine asymptotic expression for amount of solutes segregated at

the interface if possible. We compare asymptotic and numerical results to show, they are in

agreement.

Figure 9: Schematic diagram of the ternary system solidifying from a cooled boundary with

a flat solid/liquid interface. The flux in the melt, given by the velocity field u, is determined

by the density ratio ρs/ρl. In the case of ρs < ρl, which is the usual case for the aqueous

solutions, the flux is from the interface. However our model is general and includes also the

cases ρs > ρl and ρs = ρl.

We show that for the specific material and experimental parameters the flow due to shrink-

age/expansion upon the phase change can both enhance and slows down the solidification

rate. In §2.4.5 we analyze conditions for the onset of the supercooling. Finally in §1.6 we

provide some conclusions.

2.2 Formulation

We consider the solidification of a ternary alloy in the semi-infinite region from the planar

boundary (see Figure 9). The mathematical model is one-dimensional and time-dependent.

Solutes can diffuse in the liquid, but we neglect any mass transfer in the solid phase. Solid

and liquid are separated by the planar interface h = h(t). The temperature of the bottom

boundary, TB and the temperature of the melt T∞, at z → ∞ are held constant. The

concentrations in the melt at z → ∞, C∞1,2 are held at constant values as well. Along with
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the authors of the studies [23] and [24] we consider same values of the thermal conductivity

and thermal diffusivity for both the solid and liquid phases.

2.2.1 Phase diagram

Solid and liquid phases are in the thermodynamic equilibrium when the phase change

takes place. Temperature at which the melt is in thermodynamic equilibrium with the solid

phase at given solute concentrations is determined by the ternary phase diagram. Cooling

path of the liquid element is located in the one corner of the ternary phase diagram, as

depicted in Figure 10.

Evolution of the liquid element during the solidification process is following. Liquid begins

to cool at temperature T∞ and concentrations of the solutes C∞1 and C∞2 . It reaches the

solid/liquid interface at T h, Ch1 and Ch2 . Concentration of the solutes frozen into the solid,

CS1 and CS2 remain constant once solidified in and are given by the segregation coefficients.

We note that the liquid element touches the liquidus surface only in one point.

2.2.2 Conservation equations

We formulate the model in terms of differential equations. In the region of the solid phase,

z < h(t), the temperature field is governed by the diffusion equation:

∂T

∂t
= κ

∂2T

∂z2
. (2.1)

In the liquid region, z > h(t), we have mass transfer due to Brownian diffusion and phase

change driven convection. Hence the solutal and the temperature fields are governed by the

set of the convection–diffusion equations:

∂T

∂t
+ u

∂T

∂z
= κ

∂2T

∂z2
, (2.2)

∂Ci
∂t

+ u
∂Ci
∂z

= Di
∂2Ci
∂z2

, for i = 1, 2, (2.3)

where T = T (z, t) and Ci = Ci(z, t) are the temperature and concentration fields respectively

and κ = k/(ρsCps) = k/(ρlCpl) is thermal diffusivity. The parameters ρs,l are densities of

the solid and the liquid, Cps,l are specific heat of solid and liquid, k is thermal conductivity

and Di are the diffusivities of the dilute solutes. In this model, we assume that all material

parameters are independent on solute concentrations.

The field u(t) in the liquid phase represents a fluid flux from/towards the interface in the

case of expansion/contraction respectively. As a consequence of the mass conservation at the
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Figure 10: Part of the phase diagram for a ternary alloy in the space C1, C2, T . Since

temperature is monotonically increasing function of height vertical axis can be understood

as the temperature as well as the z coordinate. Thick line represents the evolution of the

liquid element during the solidification process. Projection of the cooling path to the space

of solute concentration is the straight line only when diffusivities of solutes are the same.
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interface, u(t) is given by:

u = (1− r)∂h
∂t
, (2.4)

where r = ρs/ρl is a density ratio.

Equations (2.1)–(2.3) are subject to the set of boundary conditions prescribed at the

bottom boundary, solid/liquid interface and in the far-liquid region. At the bottom boundary

(z = 0):

T (z, t) = TB. (2.5)

At the solid/liquid interface (z = h(t)):

liquidus constraint: T (h, t) ≡ T h, Ci(h
+, t) ≡ Chi , (2.6)

for i = 1, 2, with

T h = TM − Γ1C
h
1 − Γ2C

h
2 , (2.7)

energy conservation: ρsLḣ = k
∂T

∂z

∣∣∣
z=h−

− k∂T
∂z

∣∣∣
z=h+

, (2.8)

where L is the latent heat of solidification and Γ1, Γ2 > 0 are the liquidus slopes of the

liquidus surface in the ternary phase diagram (fig. 10) and TM is the melting temperature

of the pure system.

solute conservation: r(1− ki)Ci(h+, t)ḣ = −Di
∂Ci
∂z

∣∣∣
z=h+

, (2.9)

for i = 1, 2 and ki are the segregation coefficients defined as

CSi = kiC
h
i , for i = 1, 2. (2.10)

As z →∞:

T (z, t)→ T∞, (2.11)

Ci(z, t)→ C∞i for i = 1, 2. (2.12)

2.3 Self-similar transformation

We use the self-similar transformation

η =
z

2 (D1D2)1/4 t1/2
, (2.13)



2 SOLIDIFICATION OF A TERNARY ALLOY WITH DENSITY CHANGE EFFECTS33

to transform the eqn. (2.1)–(2.3) to the form

T ′′ + 2ε2ηT ′ = 0, (2.14)

T ′′ + 2ε2 [η + λ(r − 1)]T ′ = 0, (2.15)

C ′′1 +
2

µ2
[η + λ(r − 1)]C ′1 = 0, (2.16)

C ′′2 + 2µ2 [η + λ(r − 1)]C ′2 = 0, (2.17)

where we have introduced dimensionless solidification rate λ and ε and µ defined as follows:

ε =
(D1D2)1/4

κ1/2
, µ =

(
D1

D2

)1/4

. (2.18)

Boundary conditions (2.5)–(2.12) transform to the following equations.

At η = 0

T = TB (2.19)

At η = λ

T h = TM − Γ1C
h
1 − Γ2C

h
2 , (2.20)

L

Cps
=

1

2λε2
T ′
∣∣∣
η=λ+

− 1

2λε2
T ′
∣∣∣
η=λ+

(2.21)

2r(1− k1)Ch1 λ = − 1

µ
C ′1

∣∣∣
η=λ+

, (2.22)

2r(1− k2)Ch2 λ = −µC ′2
∣∣∣
η=λ+

, (2.23)

CSi = kiC
h
i , for i = 1, 2. (2.24)

At η →∞:

T → T∞, (2.25)

Ci → C∞i for i = 1, 2. (2.26)

Solution of the system of equations (2.14)–(2.17), satisfying the boundary conditions

(2.19)–(2.26), can be sought in the form:

h = 2λ (D1D2)1/4 t1/2, (2.27)

T (η) = TB + (T h − TB)
erf(εη)

erf(ελ)
, (η < λ), (2.28)

T (η) = T∞ + (T h − T∞)
erfc(εγ)

erfc(εrλ)
, (η > λ), (2.29)
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C1(η) = C∞1 + (Ch1 − C∞1 )
erfc (γ/µ)

erfc (rλ/µ)
, (η > λ), (2.30)

C2(η) = C∞2 + (Ch2 − C∞2 )
erfc (µγ)

erfc (µrλ)
, (η > λ), (2.31)

u = (1− r)λ(D1D2)1/4

t1/2
, (η > λ), (2.32)

where we have introduced the variable γ = (r − 1)λ+ η.

We substitute solutions (2.27)–(2.32) into the boundary conditions (2.19)–(2.26), which

yields a set of nonlinear algebraic equations for the unknown constants λ, Chi :

Ch1 = C∞1
1

1− (1− k1)F (rλ/µ)
, (2.33)

Ch2 = C∞2
1

1− (1− k2)F (µrλ)
, (2.34)

L

Cps
=
T h − TB
G(ελ)

+
T h − T∞
F (εrλ)

, (2.35)

where

F (x) =
√
πx exp(x2)erfc(x), G(x) =

√
πx exp(x2)erf(x). (2.36)

Equations (2.33)–(2.35) can be combined into the single equation for λ

(
Γ1C

∞
1

(1− k1)F (rλ/µ)

1− (1− k1)F (rλ/µ)
+ Γ2C

∞
2

(1− k2)F (µrλ)

1− (1− k2)F (µrλ)

)
×

(
1

G(ελ)
+

1

F (εrλ)

)
=

∆TBL
G(ελ)

− ∆T∞L
F (εrλ)

− L

Cps
, (2.37)

where we have introduced

∆TBL ≡ TM − TB − Γ1C
∞
1 − Γ2C

∞
2 , (2.38)

∆T∞L ≡ T∞ − TM + Γ1C
∞
1 + Γ2C

∞
2 . (2.39)

2.4 Results

2.4.1 Regimes of solidification

To complete solutions (2.27)–(2.32), we need to solve the set of transcendental equations

(2.33)–(2.35) together with the liquidus constraint (2.20) for constants Ch1 , Ch2 , T h and λ.

For fixed control parameters and material parameters, these constants must be obtained



2 SOLIDIFICATION OF A TERNARY ALLOY WITH DENSITY CHANGE EFFECTS35

Quantity Ni–Al(1) H2O–KNO3(2) Model ternary systems

–Ta(2) –NaNO3(1) Single-solutal diffusive Double-solutal diffusive

TM [K] 1754 273 273 273

Γ1[K %−1] 5.17 0.43 0.4 0.4

Γ2[K %−1] 2.55 0.53 0.4 0.4

κ/10−7 [m
2

s−1] 164 1.1 100 1

D1/10−9 [m
2

s−1] 5 1.34 1 0.0001

D2/10−9 [m
2

s−1] 5 1.93 1 1

L/105 [J kg
−1

] 2.9 3.4 3.4 3.4

ρl/103 [kg m
−3

] 7.365 1.25 1.0 1.0

ρs/103 [kg m
−3

] 7.365 9.2 1.0 1.0

k1[−] 0.54 0 0.4 0.4

k2[−] 0.48 0 0.4 0.4

ε[−] 0.02 0.11 0.01 0.01

µ[−] 1 0.69 1.0 0.1

r[−] 1 1.36 1.0 1.0

Table 1: List of the material parameter values for the H2O–NaNO3–KNO3 ternary system

(taken from [40] (heat capacity and latent heat) and [24] (rest of the parameters)) and for

the Ni–Al(1)–Ta(2) ternary alloy (taken from [18]). Indices l, s stand for the solid and liquid

phases.

numerically. We present numerical values of the physical parameters of our model in Table 1

for the aqueous solution of KNO3 and NaNO3 and for the Ni–Al–Ta ternary alloy. Material

parameters for the two model ternary systems are used to compare numerical and asymptotic

results. For the model ternary double-solutal diffusive system, we choose to reduce the value

of D2. This material has unique behavior which cannot be observed in binary systems, as will

be shown in what follows. We note that qualitatively similar behaviour would be observed

also for the materials with the smaller ratio of solutal diffusivities.

Qualitative insight into the solidification process can be obtained using the following

asymptotic expansions for the functions F (x) and G(x):

for x→ 0 : F (x) ∼ √πx, G(x) ∼ 2x2 (2.40)

for x→∞ : F (x) ∼ 1. (2.41)

According to the values of the thermal and solutal diffusivities in Table 1, it is reasonable

to investigate equations (2.33)–(2.35) and eqn. (2.20) in the limit ε → 0. Eight possible
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scalings of λ with ε can be identified, under the following assumptions

Γ1C
∞
1

L/Cps
= O(1)

Γ2C
∞
2

L/Cps
= O(1)

∆TBL
L/Cps

= O(1)
∆T∞L
L/Cps

= O(1). (2.42)

By inspecting the eqn. (2.27) for the position of the solid/liquid interface h(t), limiting cases

can be organized in the following four groups.

(I) κ–controlled growth regimes, in which:

(i) λ = O (1/ε) provided µ = O (1)

(ii) λ = O (1/ε) provided µ = O
(
ε1/2

)

(iii) λ = O (1/ε) provided µ = O
(
ε−1/2

)

(II) D1 and D2–controlled growth regime, in which: λ = O (1) provided µ = O (1)

(III) D1–controlled growth regime, in which:

(i) λ = O
(
ε−1/2

)
provided µ = O

(
ε−1/2

)

(ii) λ = O
(
ε1/2

)
provided µ = O

(
ε1/2

)

(IV) D2–controlled growth regime, in which:

(i) λ = O
(
ε−1/2

)
provided µ = O

(
ε1/2

)

(ii) λ = O
(
ε1/2

)
provided µ = O

(
ε−1/2

)

In the effective binary case (D1 = D2, k1 = k2, C∞1 = C∞2 ), regimes (I.i) and (II) are

analogous to their binary equvivalents presented in [40] and [7]. For further discussion on the

effective binary case see [23].

For regimes (I.ii), (III.ii) and (IV.i), where the growth is controlled by the single solutal

diffusivity, the binary-equivalent regimes can be obtained in the limit of the nearly binary

case (C∞2 → 0). To see this, λ must be redefined to λnew = λµ and εnew = εµ which leads to

the desired scaling. Regimes (I.iii), (III.i) (IV.ii) are symmetrical to the regimes (I.ii), (III.ii)

and (IV.i) by exchanging indexes 1 and 2.

For small concentration of both solutes the ternary system with µ = O (1) is expected to

solidify in the same way as a pure melt which corresponds to the regime (I.i). By increasing

far-field solute concentrations C∞i (for i = 1, 2), the growth becomes to be controlled by

solutal diffusivities (regime II). We now derive a criterion for the associated concentrations

which mark this transitions.
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We take the limit ε→ 0 in the eqn. (2.37) under the assumptions λ = O(1) and µ = O(1)

and rearrange the resulting equation in the form

Γ1C
∞
1

(1− k1)F (rλ/µ)

1− (1− k1)F (rλ/µ)
+ Γ2C

∞
2

(1− k2)F (rλµ)

1− (1− k2)F (rλµ)
= ∆TBL . (2.43)

Left-hand side of the eqn. (2.43) is at fixed ki and C∞i (for i = 1, 2) bounded from above.

We obtain this upper bound by replacing expression F (rλµ) by 1. Canceling the same terms

on both sides of the resulting equation yields

Γ1C
∞
1

1

k1
+ Γ2C

∞
2

1

k2
= TM − TB. (2.44)

If TM − TB exceeds a transition value given by eqn. (2.44), there is no solution for λ of eqn.

(2.43). In that case neglecting the terms in order to obtain eqn. (2.43) from eqn. (2.37) was

an inappropriate step and assumption λ = O(1) can not be satisfied.

Similar reasoning can be used for the regimes with µ = O
(
ε1/2

)
(and µ = O

(
ε−1/2

)
). We

obtain the transition criteria between the regimes (I.ii) 7→ (IV.i) and (IV.i) 7→ (III.ii). At first,

one obtains the equation analogous to eqn. (2.43) and consequently replace all the remaining

functions F (µrλ) and F (rλ/µ) with 1. Applying such procedure yields the following criteria:

(I.ii) 7→ (IV.i) Γ1C
∞
1

1

k1
+ Γ2C

∞
2

1

k2
= TM − TB. (2.45)

(IV.i) 7→ (III.ii) Γ1C
∞
1

1

k1
+ Γ2C

∞
2 = TM − TB. (2.46)

(I.iii) 7→ (III.i) Γ1C
∞
1

1

k1
+ Γ2C

∞
2

1

k2
= TM − TB. (2.47)

(III.i) 7→ (IV.ii) Γ1C
∞
1 + Γ2C

∞
2

1

k2
= TM − TB. (2.48)

In Figure 11(a-b) we plot lines representing a transition boundaries in the space of far-field

concentrations C∞1 and C∞2 for the given bottom temperature TB. Due to the symmetry

between the regimes (I.iii), (III.i) (IV.ii) and (I.ii), (III.ii) and (IV.i)we did not plot the

diagram for the second group of these regimes. We note that expressions (2.44)–(2.48) are

independent of ε to the leading order.



2 SOLIDIFICATION OF A TERNARY ALLOY WITH DENSITY CHANGE EFFECTS38

0 10 20 30
C∞
1

0

5

10

15

20

25

30

35

C∞
2

Regime I.i

λ=
O(1/ε)

Regime II
λ=
O(1)

No freezing

(a)

0 10 20 30
C∞
1

0

5

10

15

20

25

30

35

C∞
2

Regime I.ii
λ=O(1/ε)

Regime IV.i
λ=O(1/ε1/2)

Regime III.ii
λ=O(ε1/2)

No freezing

(b)

Figure 11: Space of far-field concentrations (C∞1 , C∞2 ) is divided into distinct regimes of

solidification in the limit ε → 0. In (a) µ = 1, (b) µ ∼ ε1/2. The transition lines are

plotted according to (2.44)–(2.48). Values of k1,2 and Γ1,2 are stated in Table 1 for the model

single-solutal diffusive (a) and double-solutal diffusive (b) systems. In all plots TB = −15◦C.

Area of the regions corresponding to regimes (I.i-ii) in Figure 11 diminishes for k1 small

or k2 small. Regime (III.i) diminishes for k2 = 1 and regime (IV.i) diminishes for k1 = 1.

2.4.2 Segregation

Important question when dealing with solidification is how much of solute freezes inside

of the final solid. In our model ratios of the solute concentrations on both sides of the

solid/liquid interface are given by the segregation coefficient (2.10). Solute concentrations on

the liquid side of the interface are given by relations (2.33) and (2.34).

When the solidification process is in one of the regimes (I.i-iii), we can obtain the following

asymptotic expression for the solute concentrations Chi (for i = 1, 2)

Chi ∼
C∞i
ki

. (2.49)

Important consequence of the simple eqn. (2.49) is that in regimes (I.i-iii) concentration

of both solutes freezed in the solid are independent of each other. Asymptotic expression

(2.49) is used to plot all non-vertical dotted curves in Figure 12(a–d).

When solidification is controlled by both solutes diffusivities (regime II), in the limit

ε→ 0, we obtain the relation

Γ1C
h
1 + Γ2C

h
2 ∼ TM − TB. (2.50)

Since the temperature field is increasing function of η, liquidus temperature at the liquid
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side of the interface can not be lower than the bottom temperature TB. In this context eqn.

(2.50) states that in the regime (II) this upper bound for the solute concentration is reached.

In the regimes (III.i) and (IV.i) the solidification is controlled by the faster diffusing solute.

In the regime (IV.i) the faster diffusing solute segregated at the interface is still reaching its

maximum value:

Ch1 ∼ C∞1 /k1, (2.51)

while the slower diffusing solute has separated from the asymptotic line Ch2 ∼ C∞2 /k2. Value

of Ch2 is obtained in the following form:

Ch2 ∼
1

Γ2

(
TM − TB − Γ1

C∞1
k1

)
. (2.52)

Finally, in regimes (III.ii) and (IV.ii) the solidification rate is controlled by the diffusivity

of the slower diffusing solute. In regime (III.ii) for the concentration of faster diffusing solute

holds

Ch2 ∼ C∞2 . (2.53)

We note that the solute segregation given by the equations (2.52) and (2.53) is unique for

the ternary system with large difference in the diffusivities of the single solutes. Agreement

of the asymptotic formula (2.52)–(2.53) with numerical results can be seen in Figure 12(d).

Using eqn. (2.53), eq. (2.35) can be rearranged in the form

S =
TM − Γ2C

∞
2 − Γ1C

h
1 − TB

G(ελ)
+
T h − T∞
F (εrλ)

. (2.54)

Since λ = O
(
ε1/2

)
, in the limit ε→ 0 eqn. (2.54) reduces to the following form

Γ1C
h
1 + Γ2C

∞
2 ∼ TM − TB. (2.55)

In this regime faster diffusing solute shifts the melting temperature of the pure melt TM

by −Γ2C
∞
2 . It plays the same role in the transition criterion (2.46). Amount of faster diffusive

solute freezed into the solid is given only by the Γ2C
∞
2 and k2, while amount of the slower

diffusive solute frozen in the solid is influenced by the far-field concentration of both solutes

as well as by both segregation coefficients. In regime (IV.ii) the roles of solutes one and two

are interchanged in comparison with regime (III.ii).



2 SOLIDIFICATION OF A TERNARY ALLOY WITH DENSITY CHANGE EFFECTS40

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
C∞
1

0

10

20

30

40

50

Ch
1

Regime I.i Regime II

C∞
1 /k1

C∞
2 =10

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
C∞
2

0

10

20

30

40

50

Ch
2

Regime I.i Regime II

C∞
2 /k2

C∞
1 =10

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
C∞
1

0

10

20

30

40

50

Ch
1

Regime I.ii Regime IV.i
Reg

ime
 III.i

i

C∞
1 /k1

C∞
2 =10

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
C∞
2

0

10

20

30

40

50

Ch
2

Regime I.ii Regime IV.i

Re
gim

e I
II.i
i

C∞
2 /k2

C∞
2 C∞

1 =10

(d)

Figure 12: Concentrations of the solutes segregated at the liquid side of the solid/liquid in-

terface. Material parameters used to obtain numerical (solid curves) and asymptotic (dashed

curves) solutions are listed in Table 1. Dotted vertical lines marks the transitional concen-

trations given by (2.44)–(2.48). Plots (a) and (b) correspond to single-solutal diffusive model

system while plots (c) and (d) to double-solutal diffusive. For the specific meaning of dashed

curves see the text in §2.4.2. Temperature of bottom boundary is TB = −16 ◦C and initial

temperature is T∞ = 15 ◦C.

By rearranging asymptotic expression (2.55) to the form

Ch1 ∼
TM − Γ2C

∞
2 − TB

Γ1
, (2.56)

we obtain expression for the Ch1 . In Figure 12(c) we see that eqn. (2.56) agrees with numerical

results. Dependence of Ch2 on C∞2 is depicted in Figure 12(d).

Transition between the regimes is depicted by the vertical dotted lines in Figure 12(a–d).

For the single-solutal diffusive case (Figure 12(a-b)) transition concentrations between the

regime (I.i) and (II) are computed based on the eqn. (2.44). For the double-solutal diffusive

case (Figure 12(c–d)) dotted vertical line marks the transition between the regime (I.ii) and



2 SOLIDIFICATION OF A TERNARY ALLOY WITH DENSITY CHANGE EFFECTS41

(III.ii) and dotted vertical line marks the transition between the regime (III.ii) and (IV.i).

2.4.3 Effect of phase-change flow

Our model incorporates flow caused by volume change during the phase change. The flow

is induced in the systems solidifying in the gravitational field as well as in the environment

without gravity. Fluid flow in the melt region is coupled with the temperature and solutal

fields. Heat and solutes are advected from the solid/liquid interface when r ≤ 1 and towards

the interface when r > 1.

In §2.4.2 we showed (see eqn. (2.49)–(2.55)) that in the limit ε → 0 the flow does not

influence the solute concentrations segregated at the interface Ch1 and Ch2 . On the other hand,

for the specific set of the experimental and material parameters, the expansion or contraction

of the solid phase upon solidification has effect on the dimensionless solidification rate λ and

on the rate of accretion of the mass to the solid phase rλ as depicted in Figure 13 (a) and

(c) – single-solutal diffusive cases and 13 (b) and (d) – double-solutal diffusive cases. In the

regimes (I.i) and (I.ii) shrinkage (r > 1) accelerate the solidification (corresponds to larger λ).

On the other hand in the regime (II), (IV.i) and (III.ii) shrinkage decreases the solidification

rate. In all cases expansion has the opposite effect. The rate of accretion of the mass to the

solid phase proportional to rλ is always larger in case of srinkage as depicted in Figure 13(c)

single-solutal diffusive case and 13(d) double-solutal diffusive case.
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Figure 13: Effect of the phase-change driven convection on the dimensionless solidification

rate λ and rate of accretion of the mass to the solid phase rλ. In all Figures ε = 10−4. In

the single-solutal diffusive cases (a) and (c) µ = 1 and in the double-solutal diffusive cases

(b) and (d) µ = ε1/2. In all plots C∞2 = 4 wt%, TB = −17 ◦C and T∞ = 15 ◦C. Material

parameters used to obtain numerical results are stated in Table 1 for the corresponding model

cases. Vertical dashed lines represents the regimes boundary based on the (2.44)–(2.48).

2.4.4 Singular behavior of approximate solutions of λ

Full numerical solutions for λ are depicted by the solid lines in Figure 14a) for the single-

solutal diffusive case and in Figure 14b) for the double-solutal diffusive case. Superimposed in

the same Figures are the approximate solutions for λ (dashed lines) obtained by substituting

the approximate expressions (2.49)–(2.56) for Ch1 , Ch2 into the equation (2.37).

To derived the approximate expressions (2.49)–(2.56) we assumed different scaling of λ

with ε in the limit ε→ 0, corresponding to the regimes listed §2.4.1. As can be seen in Figures

14(a-b) approximate solutions of λ have singular behaviour near the transition boundaries

between the regimes, reflecting the different scaling of λ with ε in each of the regimes.
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Figure 14: Full numerical solutions of λ obtained as a solution of (2.37) (solid lines) and

approximate solutions (dashed lines) obtained by substituting the approximate expressions

(2.49)–(2.56) for Ch1 , Ch2 into the equation (2.37) in the corresponding regimes. In Figure

(a) solid and dashed lines overlap. Material parameters used to obtain numerical results are

stated in Table 1 for the corresponding model cases and C∞2 = 4 wt%.

2.4.5 Marginal constitutional supercooling

When the ternary melt is cooled from the sufficiently low bottom temperature TB, under-

cooled liquid occurs above the interface. In what follows, we investigate what is the bottom

temperature, at which the supercooling of the melt in the liquid region occurs. To stress that

the bottom temperature is part of our solution, now on we denote it TBcrit.

In the approximation of the same thermal conductivities of the solid and liquid phase

supercooling criterion reeds

∂T

∂z

∣∣∣
z=h+

= −Γ1
∂C1

∂z

∣∣∣
z=h+

− Γ2
∂C2

∂z

∣∣∣
z=h+

. (2.57)

Equation (2.57) is a natural generalization of the criterion for supercooling in binary

system presented in [40] and [7]. By substituing solutions (2.29)–(2.31) into equation (2.57)

we get

∆T∞L F

(
rλ

µ

)
F (µrλ)ε2 = Γ1

(
Ch1 − C∞1

)
F (µrλ)

[
F (εrλ)

1

µ2
− F

(
rλ

µ

)
ε2

]
+

Γ2

(
Ch2 − C∞2

)
F

(
rλ

µ

)[
F (εrλ)µ2 − F (µrλ)ε2

]
. (2.58)

In the limit C∞2 → 0 and µ → 1 the above condition for the marginal constitutional

supercooling (MCS) transforms to its binary equivalent

∆T∞L F (rλ)ε2 = Γ1F (rλ)(Ch1 − C∞1 )
[
F (εrλ)− F (rλ) ε2

]
. (2.59)
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Regime λ µ Γ1C
∞
1 (1− k1)/L/Cps Γ2C

∞
2 (1− k2)/L/Cps ∆TBL,crit/L/Cps

(S-I.i) 1/ε 1 ε2 ε2 1

(S-II) 1 1 ε ε ε

(S-I.ii) 1/ε ε1/2 ε3 ε 1

(S-III.i) ε−1/2 ε−1/2 ε1/2 ε5/2 ε1/2

(S-III.ii) ε1/2 ε1/2 ε3/2 1 ε

(S-IV.i) ε−1/2 ε1/2 ε5/2 ε1/2 ε

(S-IV.ii) ε1/2 ε−1/2 1 ε3/2 ε

(S-V) ε 1 1 1 ε

(S-VI) ε2 ε1/2 1 1 ε3/2

Table 2: Table of important asymptotic scalings of λ and µ with ε and the corresponding

order of the dimensionless parameters controlling the solidification. Regimes (S-I.i–S-III.ii)

posses the same scaling of λ and µ with ε as the corresponding regimes found in §2.4.1.

Regimes (S-V) and (S-VI) represents the only possible cases when the order of the finite

far-field concentrations reminds finite for ε→ 0 without occurrence of the supercooling.

To investigate the effect of double-solutal diffusion and difference in segregation coeffi-

cients of single solutes on the onset of supercooling, we investigate the ratio of the thermal

and liquidus curve gradients at the liquid side of the interface.

−Γ1
∂C1
∂z

∣∣∣
z=h+

− Γ2
∂C2
∂z

∣∣∣
z=h+

∂T
∂z

∣∣∣
z=h+

=

=
Γ1

∆T∞L ε2

C∞1 (1− k1)
[
F (εrλ) 1

µ2
− F

(
rλ
µ

)
ε2
]

1− (1− k1)F
(
rλ
µ

) +

+
Γ2

∆T∞L ε2

C∞2 (1− k2)
[
F (εrλ)µ2 − F (µrλ)ε2

]

1− (1− k2)F (µrλ)
. (2.60)

If the gradient ratio (2.60) is of the order O(1/ε), the liquid above the interface is undercooled.

On the other hand if the gradient ratio (2.60) is of the unit order, supercooling tends to

diminish. In §2.4.1 we have identified eight regimes of solidification. Each regime corresponds

to the specific scaling of λ with ε. As depicted in Figure 11, space of far-field concentrations

is for the given TB divided into the distinct regions corresponding to the regimes. Now,

after we have introduced the condition for the onset of the undercooling (2.57), we are not

free to choose the order of ∆TBL,crit/L/Cps, but this order is determined by eqn. (2.37).

Order of TBcrit/L/Cps consequently follows from eqn. (2.38), under the additional assumption
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(1 − ki) = O(1) for i = 1, 2. For the given scaling of λ with ε, order of the expressions

Γ1C
∞
1 (1 − k1)/L/Cps and Γ2C

∞
2 (1 − k2)/L/Cps is determined from the requirement of the

gradient ratio (2.60) being of the unit order. Natural question to ask is what is the order of

Γ1C
∞
1 (1 − k1)/L/Cps, Γ2C

∞
2 (1 − k2)/L/Cps and ∆TBL,crit/L/Cps for which the scaling of λ

and µ with ε is the same as in the regimes found in §2.4.1. We found these orders for each

of scaling of λ and µ with ε found in §2.4.1. Results are shown in Table 2. We see that if

we demand the same scaling of λ and µ with ε as in the regimes found in §2.4.1, at least one

of the far-field concentration needs to be very small. To stress that these regimes are not

derived under the assumptions (2.42), but with the supercooling condition (2.60) we denote

them with S.

The only possible scaling of λ with ε, which corresponds to the ΓiC
∞
i (1 − ki)/L/Cps =

O(1) (for i = 1, 2), is λ = O (ε) (single-solutal diffusive case) and λ = O
(
ε3/2

)
(double-

solutal diffusive case). We denote these regimes (S-V) and (S-VI).Corresponding order of

∆TBL,crit/L/Cps is stated in Table 2 for each of these regimes. Regimes (V-S) and (VI-S)

illustrate that the freezing of the ternary melt with finite values of the far-field concentrations

and without occurrence of the supercooling is possible only if the melt is cooled very slowly.

We note that in contrast to the regimes found in §2.4, regimes (S-V) and (S-VI) are not

controlled by the specific diffusivity. Since λ is small in the regimes (S-V) and (S-VI), we are

able to derive the following asymptotic expressions from eqn. (2.37).

S-V: λ ∼ 1√
πr

∆TBL,crit

L/Cps

L/Cps

Γ1C∞1 (1− k1) 1
µ + Γ2C∞2 (1− k2)µ

(2.61)

S-VI: λ ∼ µ√
πr

∆TBL,crit

L/Cps

L/Cps
Γ1C∞1 (1− k1)

(2.62)

In both regimes (S-V) and (S-VI) equations (2.33) and (2.34) implies Chi ∼ C∞i (for i = 1, 2)

in the leading order.

Now we solve equations (2.6), (2.33)–(2.35) and (2.58) numerically to see how the behavior

of water-like model system reflects the properties of the asymptotic cases stated in Table 2.

We plot ∆TBL,crit in the space of C∞1 and C∞2 . Quantity ∆TBL,crit quantifies how fast we can

cool the ternary melt without occurrence of the supercooling. If ∆TBL,crit is small it means

that TBcrit needs to be very close to the far-field temperature, for the supercooling not to

occur. The opposite is true for the large ∆TBL,crit.

Figure 15(a) illustrates the onset of the supercooling for the water-like single diffusive

case. We see, that if k1 and k2 are far from 1, melt needs to be cooled very slowly to

avoid supercooling, except of the very small far-field concentrations. Disappearance of the

supercooling for the large segregation coefficients is manifested in Figure 15(b). We see that
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Figure 15: Difference between the far-field liquidus temperature and the critical bottom

boundary temperature for which the undercooling occurs in the liquid region ∆TBL,crit depicted

in the space of the far-field solute concentrations. We see that in the single-solutal diffusive

cases (a-b) ε = 0.1 and µ = 1, we are able to cool the ternary melt from the temperature of the

bottom boundary only 2–3 degrees lower than the far-field liquidus temperature if k1 = k2 = 0

(a). In case of the large segregation coefficients (b) k1 = k2 = 0.7 supercooling diminishes in

agreement with the results stated in Table 2. The contour lines are strongly curved in the

double-solutal diffusive case (c) ε = 0.1 and µ =
√
ε for wide ranges of C∞1 and C∞2 . The rest

of the material parameters are stated in Table 1 for the single and double-solutal diffusive

model system, T∞ = 15◦C

supercooling tends to diminishes for k1 = 0.7 and k2 = 0.7, in agreement with the results

stated in Table 2. Finally presence of the double-solutal diffusive effects is depicted in Figure

15(c). Difference in the solute diffusivities causes curvature of the contour lines of ∆TBL,crit in

the space of C∞1 and C∞2 . Such behaviour is analogous to the undercooling analysed in [11]

for the multicomponent system in the setup of directional solidification.

2.5 Discussion

We have investigated the solidification of a ternary system cooled from a fixed boundary.

The model formulated in §2.2 is the extension of the model for the solidification of the binary

alloy presented in [7]. Transport of heat and solutes in the model is governed by diffusion

and fluid flow caused by the volume change during the phase change.

The asymptotic approach have revealed eight asymptotic regimes corresponding to the

four different scalings of the dimensionless solidification rate with the inverse Lewis number,

in the limit of large Lewis number. Regimes are divided into four groups according to the

diffusivity, which controls the interface growth rate. Two regimes require order-one solutal
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diffusivities ratio and are similar to the regimes present in the binary model analyzed in [40]

and [7]. Presence of the third solute leads to the novel regimes, not present in the binary case.

These regimes requires solutal diffusivities ratio to be small or large for the very large Lewis

numbers. It follows that if the difference between the value of the solutal diffusivities is large

enough, there is regime in which smaller diffusivity is rate controlling as well as the regime

where the larger diffusivity is rate controlling. Space of the far-field concentrations is divided

into distinct regions, in which the solidification proceeds in one of these regimes. We have

derived criteria for the transitional far-field solute concentrations, which marks transitions

between the regimes.

In all regimes we have found the asymptotic expressions for the solute concentrations

segregated at the interface, if possible. Of particular importance are the results for the

segregation of ternary system with large (or small) solutal diffusivities ratio. We have found

that segregation of the solute which diffusivity is rate controlling is qualitatively the same

as it is in the binary system, while segregation of the other solute differs significantly. We

have shown that in the regime controlled by larger diffusivity, concentration of the slower

diffusing solute segregated at the interface is reaching its maximal value (given by the far-field

concentration and segregation coefficient). In the regime controlled by the smaller diffusivity

concentration of the faster diffusing solute segregated at the interface is close to its far-field

value.

We have found that the shrinkage during the phase change enhances the solidification rate

if the system solidifies in the regime controlled by the thermal diffusivity, but it slows down

the solidification rate if the system solidifies in the regime controlled by one or two solutal

diffusivities. The opposite have been shown to be true for the effect of the expansion.

In §2.4.5 we have analysed the effects of the non-zero segregation coefficients and the

double-solutal diffusive effects on the onset of the supercooling in the liquid melt region. We

have shown that for an order-one far-field solute concentrations, the dimensionless solidifica-

tion rate is very small under the assumption of the undercooling not to occur.
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3 Supercooled solidification

This section is based on our work Kyselica, Guba, Chudjak: Recalescence dynamics and

solidification of a supercooled melt in a finite domain (under review). See Appendix C.

3.1 Dimensional formulation

We consider the solidification of a supercooled melt in a finite domain 0 < z < H.

Initially the whole domain is occupied by the liquid, uniformly supercooled to the temperature

Ti < Tm (see Fig. 16a)), where Tm is the equilibrium melting temperature. We assume

that the solidification is initiated at t = 0. At later times the solid and liquid region are

separated by the planar moving boundary h = h(t) (see Fig. 16b)). We denote Ts(z, t) and

Tl(z, t) the temperature fields in the solid and liquid phases, respectively. We consider fixed

boundary conditions so that Ts(0, t) = Tl(H, t) = Ti. The temperature at the interface is

Th(t) ≡ T (h(t), t). Since there is no solid at t = 0, we set h(0) = 0.

Figure 16: Schematic diagram of the supercooled solidifying system in the finite domain

surrounded by the isothermal surroundings at a) initial time t = 0 and b) later time t > 0.

Initially whole system is occupied by the supercooled liquid. At later times solid and liquid

phases are separated by the planar boundary.

Transport of heat is governed by the heat diffusion only in both solid and liquid phases.

∂Ts
∂t

= κs
∂2Ts
∂z2

and
∂Tl
∂t

= κl
∂2Tl
∂z2

, (3.1)

where κs,l are the heat diffusivities in the solid and liquid phases, respectively. The heat

conservation at the interface is expressed by the Stefan condition

ρLeffḣ = ks
∂T

∂z

∣∣∣∣∣
h−

− kl
∂T

∂z

∣∣∣∣∣
h+

, (3.2)

where ρ is the density, ks,l are the thermal conductivities in the solid and liquid phases,

respectively, and

Leff (t) ≡ Lm − (Cpl − Cps) [Tm − Th(t)] (3.3)
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is the effective latent heat, dependent on the local degree of supercooling. Here Lm is the

latent heat of equilibrium solidification and Cps,l are the heat capacities of the respective

phases. The effective latent heat represents an approximation of the latent heat of non-

equilibrium solidification (see [29], [5], [6]).

As we are not interested in the volume-change effects upon solidification, we set the

densities in both phases to be the same. We note that in case of Cps = Cpl effective latent heat

reduces to the latent heat (Leff = Lm). Since the supercooled solidification is an exothermic

process, the rate of release of the effective latent heat must always be nonnegative, i.e. Leff ≥ 0

for all times. Consequently, since in real systems Cpl > Cps, there is a maximum allowed

value of the initial supercooling

∆T ≡ Tm − Ti ≤ ∆Tmax ≡
Lm

Cpl − Cps
. (3.4)

In deriving the inequality (3.4) we used that ∆T is the maximum value of Tm − Th(t). The

solidification rate is determined by the attachment kinetics. For small supercoolings, such

that ∆T/Tm � 1, it is given by the following linear kinetic law

ḣ = G(Tm − Th), (3.5)

where G is the kinetic coefficient, calculated as in [28]

G =
d

6~Tm
Lmw

NA
exp(−q/kBTm), (3.6)

where d is the molecular diameter, ~ the Planck constant, q the activation energy, kB the

Boltzmann constant, w the molecular weight and NA the Avogadro constant. The values of

material parameters for water, copper and salol are given in Table 3.

Since we have fixed-temperature boundary conditions with Ti < Tm, the only possible

temperature distribution as t → ∞, which would not be consistent with the finite extent of

the liquid. Therefore we can define tf , the time at which the system solidifies completely, as

h(tf ) = H. (3.7)

The value of tf is part of the solution.



3 SUPERCOOLED SOLIDIFICATION 50

Parameter Water Copper Salol

d/(m× 10−9) 0.29 0.23 1

q/(J× 10−20) 3 6.71 6.61

ks/(W m−1K−1) 2.25 401 0.34

kl/(W m−1K−1) 0.56 157 0.18

ρ/(kg m−3 × 103) 1 8.02 1.18

Cps/(J kg−1K−1 × 103) 2.09 0.385 1.16

Cpl/(J kg−1K−1 × 103) 4.22 0.53 1.58

Lm/(J kg−1 × 105) 3.34 2.09 0.9

Tm/K 273.15 1360 316

∆T/K 5 50 5

G/(m K−1s−1) 9.3 ×10−4 2.6 ×10−2 6.6 ×10−6

Table 3: Parameter values for water, copper and salol.

3.2 Dimensionless formulation

The present problem involves two independent set of scales. The length and time scales

determined by the attachment kinetics, respectively, are

`G =
κl

G2∆T 2
and τG =

κl
G∆T

, (3.8)

The second scaling is the thermal one, given by the finite extent of the region and the

characteristic thermal diffusion time:

`H = H and τH =
H2

κl
(3.9)

Values of the scaling factors are given in Table 4 for water, cooper and salol. We see that

kinetics scaling factors differs by a few orders from the thermal ones. Ratio of the thermal

and the kinetic scaling factors is the following

G ≡ `H
`G

=

√
τH
τG

=
G∆TH

κl
. (3.10)

We call G the dimensionless kinetic coefficient.
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Parameter Water Copper Salol

τH/s 7.5 ×104 2.7 ×102 1.0 ×105

τG/s 6.1 ×10−3 2.1 ×10−5 87

ksl 4.0 2.6 1.9

κsl 8.1 4.2 2.6

G 3.5× 103 3.6× 103 34

S 16 8 11

Smin 0.5 0.3 0.3

Table 4: Values of temporal scaling coefficients and the dimensionless material parameters for

water, copper and salol. In order to calculate τH , G we set H = 0.1 m for all three materials.

The values of the activation energy, q, for copper and salol are taken from [21] and that for

water from [1]

Dimensionless temperature is defined as follows:

θ =
T − Tm

∆T
. (3.11)

Stefan number is defined as follows:

S =
Lm

Cpl∆T
. (3.12)

The inequality 3.4 gives the minimum physical value of Stefan number, Smin such that

Smin ≡
Lm

Cpl∆Tmax
= 1− Cpsl. (3.13)

Since in this thesis we focus on the times of freezing when the finite domain effects are

needed to be taken into account, we rewrite the equations (3.1) into the thermal scaling.

Resulting equations are following

∂θs
∂t

= κs
∂2θs
∂z2

and
∂θl
∂t

= κl
∂2θl
∂z2

(3.14)

and the dimensionless boundary condition (3.2) transforms to

(S + Sminθh) ḣ = ks,l
∂θs
∂z

∣∣∣∣∣
h−

− ∂θl
∂z

∣∣∣∣∣
h+

, (3.15)

Linear kinetic law (3.5) expressed in the thermal scaling is

G−1ḣ = −θh (3.16)
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Dimensionless initial and boundary condition conditions at the bottom and upper bound-

ary are

t = 0 : h = 0, θl ≡ −1, (3.17)

z = 0 : θs = −1, (3.18)

z = 1 : θl = −1. (3.19)

3.3 Front fixing transformation

Problem given by the equations (3.14)–(3.19) include moving boundary, which makes it

troublesome for the numerical approach. In order to get rid of the moving boundary we apply

the following front fixing transformation:

ξ ≡





z
h , for 0 ≤ z ≤ h,
1−z
1−h , for h ≤ z ≤ 1,

Equations (3.14)–(3.19) then transform to the following form.

Solid: θs(ξ, t), ξ = z/h(t)

h2∂θs
∂t

= ξhḣ
∂θs
∂ξ

+ κsl
∂2θs
∂ξ2

(3.20)

Liquid: θl(ξ, t), ξ = (1− z)/(1− h(t))

(1− h)2∂θl
∂t

= −ξ(1− h)ḣ
∂θl
∂ξ

+
∂2θl
∂ξ2

(3.21)

Equations (3.20) and (3.21) are subject to the following set of boundary conditions:

ḣ = −GθI , where θI ≡ θs(ξ = 1, t) or θl(ξ = 1, t) (3.22)

θs(ξ = 0, t) = −1 (3.23)

θl(ξ = 0, t) = −1 (3.24)

θs(ξ = 1, t) = θl(ζl = 1, t) (3.25)

(S + SminθI)ḣ =
ksl
h

∂θs
∂ξ

∣∣∣∣
1

+
1

1− h
∂θl
∂ξ

∣∣∣∣
1

(3.26)

3.4 Numerical scheme

To solve system of equation (3.20) and (3.21) together with the boundary conditions

(3.23)–(3.26) we implement the MacCormack’s method (see [38]). We note that the MacCor-

mack’s method is second order accurate in space and time. Since MacCormack’s method is a
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two step method, we present at first the equations for the evolution of the physical quantities

to the auxiliary time denoted by asterisk.

At first (θs)
n
I is obtained as a larger root of the following quadratic equation

A (θnI )2 +BθnI + C = 0, (3.27)

with

A =GSmin (3.28)

B =
ksl
hn

1

∆ζs
+

1

1− hn
1

∆ζl
+GS (3.29)

C =− (θs)
n
I−1

ksl
hn

1

∆ζs
− (θl)

n
I−1

1

1− hn
1

∆ζl
(3.30)

(θs)
∗
i = (θs)

n
i + U

n
s,i

[
(θs)

n
i+1 − (θs)

n
i

] ∆t

δζs
+

Ksl∆t

∆ζ2
s (hn)2

[
(θs)

n
i+1 − 2 (θs)

n
i + (θs)

n
i−1

]
(3.31)

where U
n
s,i is defined as

U
n
s,i = −

Gθns,I
2hn

[
(ζs)i+1 + (ζs)i

]
. (3.32)

(θl)
∗
i = (θl)

n
i + U

n
l,i

(θl)
n
i+1 − θni
∆ζl

∆t+
(θl)

n
i+1 − 2 (θl)

n
i + (θl)

n
i−1

∆ζ2
l (1− hn)2

∆t (3.33)

where U
n
l,i is defined as

U
n
l,i = −

Gθns,I
1− hn

[
(ζl)i+1 + (ζs)i

]
. (3.34)

h∗ = hn −GθI∆t. (3.35)

Equations for the evolution of the quantities to the new time step n + 1 are as follows.

First (θs)
∗
I is obtained as a larger root of the quadratic equation

A (θ∗I )
2 +Bθ∗I + C = 0, (3.36)

with

A =GSmin (3.37)

B =
ksl
h∗

1

∆ζs
+

1

1− h∗
1

∆ζl
+GS (3.38)

C =− (θs)
∗
I−1

ksl
h∗

1

∆ζs
− (θl)

∗
I−1

1

1− h∗
1

∆ζl
(3.39)
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(θs)
n+1
i = (θs)

n
i +

1

2
∆tU

∗
s,i

[
(θs)

n
i+1 − (θs)

n
i

∆ζ
+

(θs)
∗
i+1 − (θs)

∗
i

∆ζ

]
+

+
Ksl

(hn)2

(θs)
∗
i+1 − (θs)

∗
i + (θs)

∗
i−1

∆ζ2
s

∆t, (3.40)

where U
∗
s,i is defined as

U
∗
s,i = −

Gθns,I
2hn

[
(ζs)i+1 + (ζs)i

]
. (3.41)

(θl)
n+1
i = (θl)

n
i +

1

2
U
∗
l,i

[
(θl)

n
i+1 − (θl)

n
i

∆ζl
+

(θl)
∗
i − (θl)

∗
i−1

∆ζl

]
∆t+

+
(θl)
∗
i+1 − 2 (θl)

∗
i + (θl)

∗
i−1

∆ζ2
l (1− hn)2

∆t (3.42)

where U
∗
l,i is defined as

U
∗
l,i = −

Gθnl,I
2(1− hn)

[
(ζl)i+1 + (ζl)i

]
. (3.43)

We note that since the time denoted with asterisk is only auxiliary, interface position is

evolved only once. Formally we write

hn+1 = h∗. (3.44)

We implemented the introduced numerical scheme in Python. The core of the code is

listed in the Appendix B.

3.5 Results

3.5.1 Asymptotic results

By the method of the matching asymptotic expansion, leading-order asymptotic solutions

S →∞ for θh and h can be derived in the following form:

θh ∼ −
(

2G2S t

ksl
+ 1

)−1/2

, (3.45)

h ∼ ksl

GS

[(
2G2S t

ksl
+ 1

)1/2

− 1

]
. (3.46)

At the times t = S t, with t = O(1) as S → ∞, Stefan condition at the leading order

yields
dh

dt
=
ksl

h
+

1

1− h. (3.47)

By integrating the equation (3.47), we get

t =
ksl

(ksl − 1)3
ln

∣∣∣∣∣

(
1− 1

ksl

)
h− 1

∣∣∣∣∣+
1

2

h2

ksl − 1
+

h

(ksl − 1)2
, (3.48)
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for ksl 6= 1 and
1

2
h2 − 1

3
h3 = t (3.49)

for ksl = 1. We note that h is continuous in ksl = 1. Equation (3.48) ((3.49)) needs to be

solved numerically for h
(
t
)
. On the other hand, it is possible to obtain the explicit formula

for the time of complete freezing tf . Since h
(
tf
)

= 1

tf =
k2

sl − 2ksllnksl − 1

2(ksl − 1)3
. (3.50)

Relation (3.50) is continuous in ksl = 1, tf (ksl = 1) = 1/6.

Since t = S t,

tf = S tf as S →∞. (3.51)

By substituting (3.47) into (3.16) we get θh as a function of h. Requiring θ′h = 0 we find

that θh acquires a maximum at h∗ given by the equation

h∗ = k
1/2
sl /

(
1 + k

1/2
sl

)
, (3.52)

and the value of the maximal dimensionless temperature is

θ∗h ∼ −(1 + k
1/2
sl )2/GS as S →∞. (3.53)

We denote t
∗

the scaled time at which θh
(
t
∗)

= θ∗h. Moreover, since θ̇h
(
t
∗)

, the kinetic

law (3.16) implies ḧ
(
t
∗)

= 0. Hence the Taylor approximation near t = t
∗

of the leading-order

interface is

h
(
t
)
∼ h∗ +

(
1 + k

1/2
sl

)2
(t− t∗) +O

[
(t− t∗)3

]
as S →∞. (3.54)

Plugging the Taylor expansion (3.54) into the Stefan condition yields

θh
(
t
)
∼ −

(
1 + k

1/2
sl

)2

GS


1 +

(
1 + k

1/2
sl

)6

3k
1/2
sl

(t− t∗)2


 as S →∞. (3.55)

Finally, for the speed of the interface we get

ḣ ≈ (1 + k
1/2
sl )/S . (3.56)

3.5.2 Comparison of the asymptotic and numerical results

Evolution of the interface temperature and position is depicted in Figure 17. Numerical

results suggest that there are three qualitatively different stages of solidification. During the

initial stage, attachment kinetics dominates. Interface temperature rises quickly to the values
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close to the equilibrium melting temperature and the growth is nonlinear in time. After a

transition time system transfer to the quasi-steady stage, where the growth is mostly influ-

enced by the latent heat release. The interface temperature is changing weakly in time and

solid grows linearly in time. In the late stage, when interface approaches the upper bound-

ary of the system, the finite-domain effects dominate. The interface temperature decreases

quickly and the growth rate increases.

In Figure 18 we plot the solutions for the interface temperature and the interface position

zoomed to the time t∗. We see that numerical solutions match the asymptotic expansions

(3.54) and (3.55) well. The agreement between the numerical and asymptotic results for θ∗h

is displayed in Figure 19. Numerical results for the time of total freezing were obtained by

simulating the freezing process with the interface position initialized at h(t = 0) = 0.01.

The simulation was stopped when the interface position reached the value h = 0.99. We

derived the asymptotic results in the limit of large Stefan number, but we see that the

asymptotic results match the numerical solutions also for S ≈ 10, and therefore describe well

the solidification of the substances such as salol, water and cooper. Finally, the comparison

between the numerical and the asymptotic results for the interface velocity around the time

t∗ is shown in Figure 21.

(a) (b)

Figure 17: Evolution of the interface temperature θ(t) and position h(t) in time. Numerical

constants are S = 10, G = 10, Smin = 0, ksl = 1 and Ksl = 1.
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(a) (b)

(c) (d)

Figure 18: A close up view of the evolution of the interface temperature θ(t) and position h(t)

around the time t∗. Solid curve is the numerical solution and dashed curves are asymptotic

expansions given by (3.54) and (3.55). Numerical constants are (a-b) S = 10, (c-d) S = 100

and in all plots G = 10, Smin = 0, ksl = 1 and Ksl = 1.
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(b)

Figure 19: Maximal interface temperature which system attains during the solidification

process as a function of dimensional parameter S . Parameters used to plot numerical results

(points) are a) G = 5 and b) G = 10, Smin = 0, ksl = 1 and Ksl = 1 in both plots. Dashed

curves are plotted according to the asymptotic formula (3.53).
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Figure 20: Time of freezing tf as a function of dimensionless parameter S . Parameters used

to plot numerical results (solid curve) are (a-b) G = 5 and (c-d) G = 10, Smin = 0, ksl = 1

and Ksl = 1 in both plots. Asymptotic solutions (dashed curves) are plotted according to

(3.50).
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Figure 21: Interface velocity at the time of maximal interface temperature as a function of

dimensionless parameter S . Parameters used to plot numerical results (points) are a) G = 5

and b) G = 10, Smin = 0, ksl = 1 and Ksl = 1 in both plots. Dashed curve is plotted

according to the asymptotic formula (3.56).
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4 Conclusions

In this thesis, we introduce three problems involving phase change and flow of multiphase

systems. First is the asymmetric mode of a Taylor bubble moving in the vertical pipe under

against the downward flow, second is a solidification of a ternary alloy in the semi-infinite

domain cooled from the bottom boundary and third is a solidification of supercooled liquids

in a finite domain.

In §1 we have reconstructed the shape of the fast asymmetric elongated air bubbles in

the vertical pipe under the presence of the downward fluid flow. The experiments have been

performed using an experimental facility at the School of Mechanical Engineering of the Tel-

Aviv University, developed and described by [19] to study the dynamics of Taylor bubbles in

external fluid flows. To produce the fast asymmetric elongated bubbles, the downward fluid

flow has been triggered after the bubble had reached a steady rise in otherwise stagnant fluid.

To justify the precision of our laser method, we have determined a shape which would be

observed if viewed from the side based on the laser measurements. Consequently, we have

compared the shape to that obtained from the side-view image, and found a good agreement.

We have also calculated volumes of the bubbles in the asymmetric mode. Calculated val-

ues have showed good agreement with the volumes of the bubbles in the symmetric mode,

produced during the same injection time.

Laser measurements reveal that the bubble cross section through the plane perpendicular

to the pipe axis is not concave, but there is a depression in the bubble shape reflecting the

strongest flow in the middle of the pipe. Despite the fact that the velocity of the asymmetric

bubble does not depend on the velocity of downward fluid flow, we have found a dependence

of the bubble shape on the flow velocity. The asymmetric bubble becomes more tapered as

the flow rate increases.

A simple inviscid model to predict the bubble shape has been proposed. Predicted bubble

shapes are in qualitative agreement with our experimental findings.

In §2 we have modeled the solidification of the ternary system cooled from the rigid

boundary in the one dimensional half-space. Flow present in the model is due to the expansion

or shrinkage upon the phase change. Transport of heat is governed by the convection-diffusion

equation. We have derived analytic form of the solutions for the temperature field, two solutal

fields, interface position, and the flow field, up to the four constants, which are determined by

the set of the transcendental system of equation. By analyzing the system of transcendental

equations in the limit of small Lewis numbers we have identified eight asymptotic regimes.

Solidification proceeds in one of these regimes, depending on the material and experimental
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parameters. We have also identified the material and experimental parameters for which

these regimes occur. We have found asymptotic expressions for the amount of each solute

segregated at the interface. It has been shown that the effect of the flow has enhancing or

reducing the effect on the solidification rate, depending on the asymptotic regime in which

the solidification proceeds. In the last part of §2 we have analyzed marginal constitutional

supercooling. Our numerical results have shown that undercooling is stronger influenced by

the slower diffusing solute, rather than the faster diffusing solute.

In §3 we have modeled solidification of one-dimensional supercooled liquid in a finite

domain. Heat transport has been modeled by the diffusion equation in both solid and liquid

phases. Direct numerical simulation of the model reveals different stages of freezing dynamics:

the initial stage dominated by the interfacial attachment kinetics, the intermediate quasi–

equilibrium stage, and the late stage dominated by the finite-domain effects. The case of large

latent heat release upon solidification and small undercooling, which corresponds to the large

Stefan number and is typical to the large variety of materials, has been studied. We have

presented the asymptotic solutions for the total time of freezing, interface position, interface

temperature and maximal interface temperature which system attains during the freezing, in

the limit of large Stefan number. Comparing asymptotic solutions to the numerical results

have shown good agreement with numerical results, even for the realistic values of Stefan

number, similar to the Stefan number typical for Salol.
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[25] M. G. Hennessy, M. C. Schwarzwälder, and T. G. Myers. Asymptotic analysis of the

guyer–krumhansl–stefan model for nanoscale solidification. Appl. Math. Modell., 61:1–

17, 2018.
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INTRODUCTION

Flows of aerated liquid in the vertical pipe attract wide interest of
researchers in both scientific and technical applications. Common
pattern occurring in such flows are Taylor bubbles – elongated
bullet-shaped bubbles. In recent decade movement of elongated
bubbles in the downward flow attracted particular attention of many
studies.

• Lu and Prosperetti (2006) found that the bubble shape becomes
unstable at certain downward fluid flow velocity

• Fabre and Figueroa-Espinoza (2014) observed occurrence of a
stable asymmetric mode of the fast bubbles

• Fershtman et al. (2017) observed constant velocity of an asym-
metric bubble for wide range of flow velocities

• 2D numerical study Figueroa-Espinoza and Fabre (2011) pre-
dicted the stable asymmetric mode

TRANSITION FROM SYMMETRIC TO ASYMMETRIC MODES

At a critical downward fluid flow velocity vcrit = −0.13
√
gD Taylor

bubble becomes unstable and for the limited time, stable asymmet-
ric mode arises. Here D is the pipe diameter and g is gravitational
acceleration.

Side-view of the bubble in the (a) symmetric mode and (b) asym-
metric mode.
Transition to asymmetric mode is accompanied by the significant
increase in the bubble velocity.

Experimental results for the dimensionless bubble velocity U∗t as a
function of the flow velocity U∗L. Note the independence of the bub-
ble velocity for asymmetric modes. Figure taken from Fershtman
et al. (2017).

FRONT-VIEW – DEPRESSION OF THE BUBBLE SHAPE

We have lit the tube by the horizontal laser plane. Using the high-
speed camera, we made a series of pictures of the bubble crossing
the laser plane. By combining the series of bubble cross-sections
we have reconstructed the 3D bubble surface.

Bubble edge lit by the laser plane as seen on (a) raw image and
(b) detected edge in the horizontal cross-section view.

GLOBAL INVISCID MODEL

We have formulated a global inviscid model to predict the bubble
shape as viewed from the side.

Schematic of the asymmetric bubble. (a) Side-view and (b) hori-
zontal cross-section.
The model is described by the global balances:

Zero pressure drop: pA = pB
Continuity: vAAA = vBAB(xB)

Bernoulli’s equation:
1

2
ρv2A + ρghA + pA =

1

2
ρv2B + ρghB + pB

Here ρ density of the fluid, p fluid pressure, h vertical distance
measured from the bubble top, A cross sectional area occupied by
the fluid and g gravity acceleration. Lower index A indicates the
upper position and index B lower position.
The balances combine to yield:

h (xB) =
1

2g
v2A



(

πD2

4AB(xB)

)2

− 1




THEORY VS EXPERIMENT

We have compared the bubble shape data obtained by two exper-
imental techniques and with the side-view bubble shape predicted
by the global inviscid model.

Comparison of the bubble shape obtained from: (a) the side-view
and laser experiments, (b) the side-view experiments and theory
and (c) the side laser experiments and from theory.

CONCLUSIONS

We have reconstructed the 3D shape of the fast asymmetric elon-
gated air bubbles in the vertical pipe under the presence of the
downward fluid flow. Our measurements have revealed the follow-
ing facts.
• There is a depression in the shape of the horizontal bubble

cross-section
• Side-view projection of the measured bubble-shape data is in a

good agreement with that from the global inviscid model
• Side-view data match the side-view projection from the laser

measurement
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while ( t i < Nt max ) and ( h new < h max ) :

d e l t a t = g e t d e l t a t ( d e l t a x l , d e l t a x l , h old , U s , ip )

t range [ t i ] = get new time ( t range , t i , d e l t a t )

# Evo lu t ion to : t s t a r

t s o l d [ i smax ] = g e t t I ( h old , d e l t a x s , d e l t a x l , \
t s o l d [ i smax −1] , t l o l d [ i smax −1] , ip )

t l o l d [ i smax ] = t s o l d [ i smax ]

U s = −x s ∗ ip [ ’G’ ]∗ t s o l d [ i smax ] / h o ld

U l = −x l ∗ ip [ ’G’ ]∗ t l o l d [ i smax ]/(1− h o ld )

t s s t a r = e v o l v e t s s t a r ( t s s t a r , t s o l d , U s , d e l t a t ,\
d e l t a x s , h old , Nx, ip )

t l s t a r = e v o l v e t l s t a r ( t l s t a r , t l o l d , U l , d e l t a t ,\
d e l t a x l , h old , Nx, ip )

h s t a r = h o ld − ip [ ’G’ ]∗ t s o l d [ i smax ]∗ d e l t a t

t s s t a r [ i smax ] = g e t t I ( h s tar , d e l t a x s , d e l t a x l ,\
t s s t a r [ i smax −1] , t l s t a r [ i smax −1] , ip )

t l s t a r [ i smax ] = t s s t a r [ i smax ]

# Evo lu t ion to : t n+1

U s s t a r = −x s ∗ ip [ ’G’ ]∗ t s s t a r [ i smax ] / h s t a r

U l s t a r = −x l ∗ ip [ ’G’ ]∗ t l s t a r [ i smax ]/(1− h s t a r )

ts new = e v o l v e t s ( ts new , t s o l d , t s s t a r , d e l t a t ,\
d e l t a x s , U s s tar , h s ta r , Nx)

t l new = e v o l v e t l ( t l new , t l o l d , t l s t a r , d e l t a t ,\
d e l t a x l , U l s t a r , h s ta r , Nx)

# I n t e r f a c e i s updated only once in a time s t e p

h new = h s t a r

ts new [ i smax ] = t s s t a r [ i smax ]

t l new [ i smax ] = t s s t a r [ i smax ]

t s p l t , t l p l t , h t , t i t , h p l t =\
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s t o r e d a t a f o r p l o t i n g ( h new , h p l t , h max , h i n i t ,\
t i , t s s t a r , ts new , t l new ,\
t s p l t , t l p l t , h t , t i t ,\
i smax , p r i n t i n g=t e s t p r i n t )

# Upgrade o l d v a r i a b l e to the new one

t s o l d , t l o l d , h o ld = ts new , t l new , h new

t i += 1

c h c e k c f l ( U s , t i , ts new , h new , d e l t a t , d e l t a x s , ip )

Listing 1: The core part of the Python implementation of the numerical scheme given by the

equations (3.27)–(3.44).
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Abstract

We study the dynamics of supercooled solidification of a pure material in a
finite domain subject to isothermal boundary conditions. At early stages when
the liquid can effectively be treated as semi-infinite, we derive asymptotic solu-
tions in the limits of both strong and weak latent-heat release, corresponding
to large and small effective Stefan numbers, respectively. In particular, the
solutions describing a rapid recalescence followed by a gradual change in the in-
terfacial temperature are derived. Once the finite extent becomes effective, the
system relaxes to an intermediate stage. For large Stefan numbers, the interme-
diate stage is quasi-steady, with the linear temperature profiles in the two phases
and the interface temperature close to an equilibrium melting temperature. For
Stefan numbers less than unity, the intermediate stage has a traveling-wave
temperature profile in the liquid, similar to that in the one-sided problem, and
a self-similar profile in the solid, where the temperature is close to the interface
temperature through the whole solid except for a thermal boundary layer far
from the interface.

Keywords: Two-sided Stefan problem, Kinetic supercooling, Recalescence,
Latent heat, Matched asymptotic expansions, Finite domain

1. Introduction

Many liquids can be cooled below their equilibrium melting temperature
without actually solidifying. Such phenomenon is called supercooling. Solidifi-
cation of a supercooled liquid can be triggered by various mechanisms, e.g. by
the presence of some impurity, as in clouds (Hobbs [1]), by the impact of super-
cooled droplets (Schremb et al. [2]) or just by tapping the supercooled water in
a bottle. From a thermodynamic point of view, the supercooled solidification is
a process during which the system moves irreversibly from a metastable state

∗Corresponding author
Email address: kyselica@ig.cas.cz (Juraj Kyselica)
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to a stable one (Ashby [3]; Kostinski & Cantrel [4]). The solidification rate is
a function of local supercooling and is determined by a difference between the
rates of attachment and detachment of molecules of the liquid phase to or from
the solid phase (Ashby [3]). The term kinetic supercooling is usually used to
describe this situation.

The simplest model of kinetically-supercooled solidification is the one-sided
Stefan problem with a semi-infinite liquid (Davis [5]). The term one-sided refers
to the fact that only the thermal field in the liquid is evolved, while that in the
solid is constant. The one-sided model is widely used in literature, and although
it cannot be solved explicitly, its treatment is less challenging than that of the
two-sided model. However, as pointed out by Evans & King [6], the standard
one-sided model does not conserve energy. They derived a modified, energy
conserving one-sided reduction of the two-sided model with thermally insulated
solid in the limit when the ratio of the heat conductivities in the solid and liquid
is small. Myers et al. [7] derived a consistent one-sided reduction in the limit
when the ratio is large, as appropriate to many materials.

During solidification of a kinetically-supercooled liquid, the latent heat re-
leased upon solidification results in an increase of the local temperature – the
process known as recalescence (Feuillebois et al. [8]). When the latent heat is
higher than the initial sensible heat, the local temperature rises rapidly to the
values close to the equilibrium melting temperature. In the simple, one-sided
model, this can be shown also formally: for large times, the solutions tend to
the classical Neumann solutions for equilibrium solidification. On the other
hand, when the latent heat is lower than the initial sensible heat, the one-sided
problem admits a large-time, travelling-wave solution with interface tempera-
ture below the equilibrium melting temperature. The same dependence of the
large-time behaviour on the relative magnitude of the latent and sensible heats
has been found also in the two-sided problem with a thermally insulated solid
(Glicksman & Schaefer [9], Charach & Zaltzman [10]).

The energy conserving, one-sided reductions mentioned above hinged on the
assumption that the solid in the underlying two-sided problem was thermally
insulated. However, there are situations in practice where the solid is in thermal
contact with isothermal surroundings, e.g. solidification of a liquid layer or a
drop on an isothermal substrate (Schremb et al. [2]; Tembely & Dolatabadi [11]).
In such cases, the appropriate boundary conditions are the fixed-temperature
ones. For the planar Stefan problem with kinetic supercooling subject to such
boundary conditions, the one-sided reductions of Evans & King [6] and Myers
et al. [7] are no longer valid.

In the mathematical modelling of the solidification problems, the systems
are typically assumed to occupy an infinite or a semi-infinite domain. The
rationale behind this assumptions is that the analysis of the governing equations
is simpler and the explicit solutions, if they exist, can be found only on infinite
or semi-infinite domains. However, the dynamics on an unbounded domains
can be completely different than that on a finite one. A simple example is the
appearance of a steady temperature profile on a finite domain. The semi-infinite
approximation is useful at the early stages, where the solidification starts at

2
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one boundary so that the system does not ‘feel’ the second boundary. However,
at later times, the finite extent of the domain has to be taken into account.
The implications of the finite domain in the case of binary alloy solidification
have been analysed by Gewecke & Schulze [12]. Similarly as in their work, we
study the possibility of the formation of quasi-steady temperature profile and
its consequences.

In section 2 we formulate the problem of supercooled solidification of a pure
material in a finite-size domain with the isothermal boundary conditions, consis-
tently incorporating a solid phase in the two-phase model. In section 3, the full
problem is solved numerically. In section 4 we analyse the short-time dynamics
in an effectively semi-infinite domain, before the finite extent of the domain
becomes effective. We consider the cases of both strong and weak latent-heat
release. For weak latent-heat release, large-time solutions are derived that de-
scribe the thermal evolution in the growing solid phase, absent from the previous
analyses of one-sided supercooled Stefan problem (Umantsev [13], Font at al.
[14]). In section 5 we provide asymptotic results for the stages after the finite
extent of the system became effective. Discussion of the results and conclusions
are provided in section 6.

2. Mathematical model

2.1. Dimensional formulation

We consider a one-dimensional region 0 < z < H , initially occupied by a
uniformly supercooled pure liquid at temperature Ti < Tm, where Tm is the
equilibrium melting temperature. We assume that the solidification is initiated
at time t = 0. At later times, the growing solid region, 0 < z < h(t), is
separated from the liquid region, h(t) < z < H , by a moving interface at
z = h(t). We denote Ts(z, t) and Tl(z, t) the temperature fields in the solid and
liquid phases, respectively. We consider fixed-temperature boundary conditions
with Ts(0, t) = Tl(H, t) = Ti. The unknown temperature at the interface is
Th(t) ≡ T (h(t), t). Since there is no solid at t = 0, we set h(0) = 0. The
situation is depicted in figure 2.1.

The governing equations for the temperature in the solid and liquid, respec-
tively, are

∂Ts
∂t

= κs
∂ 2Ts
∂z 2

and
∂Tl
∂t

= κl
∂ 2Tl
∂z 2

, (2.1a, b)

where κs,l are the heat diffusivities in the solid and liquid phases. The heat
conservation at the interface is expressed by the Stefan condition

ρLeffḣ = ks
∂T

∂z

∣∣∣∣
h−

− kl
∂T

∂z

∣∣∣∣
h+

, (2.2)

where ρ is the density, ks,l are the thermal conductivities in the solid and liquid
phases and

Leff(t) ≡ Lm − (Cpl − Cps)[Tm − Th(t)] (2.3)

3
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Isothermal surroundings

Isothermal surroundings

Solid

Liquid

Ti

Ti Th(t) Tm

z = H

z = h(t)

z = 0

t > 0

1

Figure 2.1: A definition sketch. The liquid is initially supercooled by ∆T ≡ Tm −
Ti, where Tm is the equilibrium melting temperature and Ti is a constant initial
temperature. The solid and dashed curves correspond to representative temperature
profiles in the solid and liquid phases at a later instant, respectively.

is the effective latent heat, dependent on the local degree of supercooling. Here,
Lm is the latent heat of equilibrium solidification and Cps,l are the heat capaci-
ties of the respective phases. The effective latent heat represents an approxima-
tion of the latent heat of non-equilibrium solidification (for details, see Charach
& Zemel [15]; Charach & Zaltzman [10]; Kostinski & Cantrell [4]).

As we are not interested in the volume-change effects upon solidification, we
have set the densities in both phases to be the same. On the other hand, we
assume different values of thermal conductivities and heat capacities in the solid
and liquid phases. Note that Leff = Lm when Cps = Cpl. Since the supercooled
solidification is an exothermic process, the rate of release of the effective latent
heat must always be non-negative, i.e. Leff(t) ≥ 0 for all times. Since in real
systems Cpl > Cps, there is a maximum allowed value of the initial supercooling

∆T ≤ ∆Tmax ≡ Lm/(Cpl − Cps), (2.4)

where ∆T ≡ Tm − Ti. In deriving the above inequality we used that ∆T is the
maximum value of Tm − Th(t).

The solidification rate is determined by the attachment kinetics. For small
supercoolings, ∆T/Tm ≪ 1, it is given by the linear kinetic law

ḣ = G(Tm − Th), (2.5)

where G is the kinetic coefficient, calculated as (Ashby & Jones [3])

G =
d

6~Tm
Lmw

NA
exp(−q/kBTm), (2.6)

where d is the molecular diameter, ~ the Planck constant, q the activation en-
ergy, kB the Boltzmann constant, w the molecular weight and NA the Avogadro
constant.

Since we have fixed-temperature boundary conditions with the same tem-
peratures, T = Ti, at both ends, the only possible temperature distribution as

4
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Parameter Water Copper Salol

d/(10−9 m) 0.29 0.23 1
q/(10−20 J) 3 6.71 6.61
ks/(W m−1K−1) 2.25 401 0.34

kl/(W m−1K−1) 0.56 157 0.18

ρ/(103 kg m−3) 1 8.02 1.18

Cps/(10
3 J kg−1K−1) 2.09 0.385 1.16

Cpl/(10
3 J kg−1K−1) 4.22 0.53 1.58

Lm/(10
5 J kg−1) 3.34 2.09 0.90

Tm/K 273.15 1360 316
∆T/K 5 50 5
G/(m K−1s−1) 9.32× 10−4 2.63×10−2 6.65×10−6

τH/s 7.54× 104 2.70×102 1.04× 105

τG/s 6.12× 10−3 2.14×10−5 87
G 3.51× 103 3.55× 103 34
S 16 8 11
Smin 0.50 0.27 0.27

Table 1: Values of physical parameters for water, copper and salol. For the definitions
of symbols see text. In calculating τH and G, we have set H = 0.1 m in all three cases.
The values of the activation energy, q, for copper and salol are taken from Font et al.
[14] and that for water from Barahona [16]. Note that the value of G of salol is two
orders of magnitude smaller than those of water and copper.

t → ∞ is T ≡ Ti. Since Ti < Tm, it follows that the system must completely
freeze in finite time since otherwise (2.5) would imply h ∼ G(Tm−Ti)t as t→ ∞,
which would not be consistent with the finite extent of the system. Therefore
we can define tf , the time of complete freezing, as

h(tf ) = H. (2.7)

The value of tf is determined as part of solution.

2.2. Separation of dimensional scales

The present problem involves two independent sets of scales. The length-
scales and time-scales determined by the attachment kinetics are

ℓG ≡ κl/G∆T and τG ≡ κl/G
2∆T 2, (2.8a, b)

respectively. The second scaling is the thermal one, given by the finite extent
of the region and the characteristic thermal diffusion time:

ℓH ≡ H and τH ≡ H2/κl. (2.9a, b)

The kinetic scales are the natural choice when the liquid is semi-infinite for
they do not involve H . We shall consider situation that occurs typically in

5
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practice, when the kinetic and thermal scales are separated, so that ℓG ≪ ℓH
and τG ≪ τH . The relative magnitude of the two-length scales or the time-scales
is measured by the dimensionless number

G ≡ ℓH/ℓG = (τH/τG)
1/2 = G∆TH/κl, (2.10)

which can also be interpreted either as the dimensionless kinetic coefficient or
the dimensionless extent of the system (see section 2.3). The separation of scales
is equivalent to the asymptotic limit of large G. On the other hand, it follows
from (2.10) that G → 0 when ∆T → 0. Therefore, in order that we keep G large
with small supercooling, we shall consider the following asymptotic range for
∆T :

κl/GH ≪ ∆T ≪ Tm. (2.11)

Note that the kinetic scales are related to the thermal ones through

ℓG = ℓH/G and τG = τH/G2. (2.12a, b)

In table 1 we present the representative values of G for water, copper and salol.

2.3. Dimensionless formulation

In order to highlight the differences between the kinetic and thermal scalings,
we formulate the dimensionless equations in both. The dimensionless tempera-
ture is the same in both formulations,

θ = (T − Tm)/∆T. (2.13)

The effective range for θ is −1 ≤ θ ≤ 0. The spatial and time variables are
made dimensionless by

ẑ = z/ℓi and t̂ = t/τi, (2.14a, b)

with i = G or H for kinetic or thermal scalings, respectively. The hats denote
the dimensionless variables and the scales ℓi and τi, i = G,H are defined by
(2.8a, b) and (2.9,a, b). The heat equations in the solid and liquid are formally
the same in both scalings, as does the Stefan condition. Omitting the hats, the
heat equations become

∂θs
∂t

= κsl
∂ 2θs
∂z 2

and
∂θl
∂t

=
∂ 2θl
∂z 2

, (2.15a, b)

with κsl ≡ κs/κl. The dimensionless Stefan condition reads

(S + Sminθh)ḣ = ksl
∂θs
∂z

∣∣∣∣
h−

− ∂θl
∂z

∣∣∣∣
h+

, (2.16)

with ksl ≡ ks/kl and the dimensionless Stefan number, S , defined as

S ≡ Lm/Cpl∆T. (2.17)

6
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The inequality (2.4) gives the minimum attainable value of Stefan number, Smin,
such that

S ≥ Smin ≥ 0, (2.18)

where
Smin ≡ Lm/Cpl∆Tmax = 1− Cpsl, (2.19)

with ∆Tmax defined in (2.4) and Cpsl ≡ Cps/Cpl. In both scalings, the initial
conditions and the condition at the solid bottom are

t = 0 : h = 0, θl = −1, (2.20a, b)

z = 0 : θs = −1. (2.20c)

The differences between the kinetic and thermal scalings appear in the kinetic
law and the condition at the upper boundary. The dimensionless kinetic law is

ḣ = −θh, (kinetic scaling) (2.21a)

G−1ḣ = −θh (thermal scaling) (2.21b)

and the condition at the upper boundary becomes

z = G : θl = −1, (kinetic scaling) (2.22a)

z = 1 : θl = −1. (thermal scaling) (2.22b)

The system can effectively be treated semi-infinite at early stages, during
which the temperature disturbance, caused by the latent-heat release at the
interface, has not got enough time to propagate to the vicinity of the upper
boundary. Therefore, at early times, we can set H = ∞ so that the kinetic
scales are the only natural scales. For times when the finite extent of the
liquid becomes relevant, we employ the thermal scaling. Below, we use both
dimensionless formulations in order to develop the asymptotic solutions valid at
different stages of the system’s evolutions. For the purpose of further discussion,
we denote by t∞ the duration of the stage during which the system is effectively
semi-infinite.

3. Full model: numerical solutions

For the full model, the finite height of the liquid affects the dynamics so
that H and τH are the natural length and time scales, respectively. To solve the
problem numerically, we first fix the moving boundary by the space coordinate
transformations

ξ ≡





z

h
, for 0 ≤ z ≤ h,

1− z

1− h
, for h ≤ z ≤ 1,

(3.1)
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Figure 3.1: a) Dimensionless temperature profiles in the solid (solid curves) and
liquid (dashed curves) for S = 10 and G = 100, shown at several time instants,
t/tf = 0.0001, 0.1, 0.5, 0.9, 0.9998 and 1, where tf = 1.64 is the complete-freezing
time. The completely solid curve (red) corresponds to the instant of complete freezing,
t = tf . b) The same for S = 0.5, G = 100 and t/tf = 0.01, 0.1, 0.5, 0.9, 0.98 and 1,
where tf = 1.95× 10−4. In both figures, we have set ksl = 1 and Smin = 0.

which transforms both the solid and liquid regions onto interval 0 ≤ ξ ≤ 1, with
ξ = 1 corresponding to the interface in both phases. The heat equations in the
solid and liquid phases, respectively, become

h2
∂θs
∂t

= ξḣh
∂θs
∂ξ

+ κsl
∂ 2θs
∂ξ 2

, (3.2a)

(1− h)2
∂θl
∂t

= −ξḣ(1− h)
∂θl
∂ξ

+
∂ 2θl
∂ξ 2

. (3.2b)

The Stefan condition transforms as follows

(S + Sminθh)ḣ =
ksl
h

∂θs
∂ξ

∣∣∣∣
1−

+
1

1− h

∂θl
∂ξ

∣∣∣∣
1−
. (3.3)

A fully-implicit finite-difference scheme in time is combined with central dif-
ferences for space derivatives to produce the tridiagonal algebraic system from
(3.2a, b). Moving boundary condition (3.3), with ḣ eliminated using (2.21b), is
used to estimate θh. Moving boundary condition (2.21b) with an explicit rela-
tionship for ḣ is then incorporated into an iterative scheme to update h. The
numerical results check satisfactorily with an alternative approach in which only
the space derivatives are discretized and the resulting ordinary differential equa-
tions are integrated in time using well-established stiff-system algorithms.
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Figure 3.2: a) Dimensionless interface position, h, as a function of scaled time, t/tf ,
where tf = 1.64 is the complete-freezing time, for S = 10 and G = 100 (black solid
curve). The red dashed curve corresponds to the asymptotic solution as S → ∞,
given in (5.3a), derived in the semi-infinite domain (for more details, see section 4.2).
The blue dashed curve corresponds to the asymptotic solution in the quasi-steady
stage as S → ∞, given in (5.6). b) Dimensionless interface temperature, θh, as a
function of scaled time t/tf , for the same values of dimensionless parameters as in a)
(black solid curve). The red dashed curve in the inset corresponds to the asymptotic
solution (5.3b), plotted at early times. The blue dashed curve corresponds to the
asymptotic solution in the quasi-steady stage, given in (5.13). In both figures we have
set Smin = 0 and ksl = 1.

The values of the Stefan numbers used deserve some comment. In the one-
sided Stefan problem with kinetic supercooling on a semi-infinite domain, there
are three distinct parametric regimes, yielding qualitatively different solutions
as t → ∞ (see also Davis [5]): S > 1, S = 1 and S < 1. In the case with
S > 1, the solutions tend to the classical Neumann solutions with the interface
temperature equal to the equilibrium melting temperature so that the solidifi-
cation is dominated by the diffusion. When S < 1, the system is said to be
hypercooled. There is not enough latent heat to warm up the interface to the
equilibrium temperature and, as a result, the interface temperature tends to a
constant as t → ∞, that is below the equilibrium melting temperature so that
the solidification is dominated by the kinetic effects. The limiting temperature
profile in the liquid has the form of a traveling wave. The case S = 1 corre-
sponds to the transition between the two regimes above. The same classification
of the values of S applies for the two-phase problem on a semi-infinite domain
with insulated solid (for more details, see Charach & Zaltzman [10]). In the
present paper, we distinguish between the values of S less and greater than 1.
We shall not consider the special case S = 1 as it is more of theoretical than
practical interest: in practice, it is unlikely to have a system with the values of
physical parameters such that S is precisely equal to unity. In computing the
numerical solutions, we set Smin = 0 as its finite values just move the origin for
the parameter S .

The numerical solutions of the full problem for large values of S are pre-
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Figure 3.3: a) Dimensionless interface position, h, as a function of scaled time, t/tf ,
where tf = 1.95 × 10−4 is the complete-freezing time, for S = 0.5 and G = 100
(black solid curve). The red dashed line, given by h = Gt, represents the solution in
the limiting case S = Smin (see section 4.3). The slope of the blue dashed line is
equal to the large-time solidification rate, ḣ = GV , with V given in (4.51), computed
in the semi-infinite domain (see section 4.3). The inset zooms in the main plot at
early times. Note that the red dashed line asymptotes the black curve as t → 0. b)
The dimensionless interface temperature, θh, as a function of scaled time t/tf , for
the same values of dimensionless parameters as in a). The red dashed line θh = −1
represents the solution when S = Smin. The blue dashed curve represents the large-
time asymptotics in the semi-infinite domain, given by (4.47b). In both figures we
have set Smin = 0 and ksl = 1.

sented in figure 3.1(a) for the temperature profiles and in figures 3.2(a, b) for
the interface position and temperature. A rapid recalescence takes place at early
times. As the finite extent of the domain comes into effect, there is a transient
period during which the temperature in the liquid relaxes towards a quasi-steady
state, in which the temperature is linear and the interface temperature is close
to the equilibrium melting temperature. Consequently, the solidification rate is
almost constant. The quasi-steady profile in the liquid exists until the system
freezes completely. On the other hand, the temperature in the solid remains
quasi-steady until the terminal stage of solidification as t → tf , during which

θh → −1 and ḣ→ G.
The results for S < 1 are presented in figure 3.1(b) for the temperature

profiles and in figures 3.3(a, b) for the interface position and temperature. In
the solid, the temperature is quasi-steady only during a short initial period. This
is in contrast with the case when S > 1. At later times, a thermal boundary
layer at the bottom of the solid forms and the temperature is almost constant
through the rest of the solid. At these later stages, the temperature in the liquid
has travelling-wave character until a short terminal stage, when a rapid drop
in the interface temperature occurs as the finite extent of the domain becomes
effective. Also note that the solidification rate is almost constant most of the
time, except from the short periods at the beginning and end of solidification,
see figure 3.3(a).
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The evolution of the system for t > tf , not shown in figures 3.1(a, b), is
given by relaxation towards the homogeneous temperature θ ≡ −1. In the
next two sections, we derive asymptotic results to gain better insight into the
numerical solutions presented above and to understand the differences between
the dynamics in the semi-infinite and finite domains.

4. Asymptotics: semi-infinite domain

When the liquid is effectively semi-infinite, the kinetic scaling, defined by
(2.14a, b) with i = G, is the natural one to be adopted. In such case, the
boundary condition (2.22a) is replaced by

z → ∞ : θl → −1. (4.1)

In the solid phase, we introduce a scaled spatial variable

ξ ≡ z/h. (4.2)

The heat equation in the solid transforms as

h2
∂θs
∂t

− ξḣh
∂θs
∂ξ

= κsl
∂ 2θs
∂ξ 2

(4.3)

and is subject to

ξ = 0 : θs = −1, (4.4a)

ξ = 1 : θs = θh. (4.4b)

In the liquid, we introduce
η ≡ z − h, (4.5)

so that the heat equation transforms as

∂θl
∂t

− ḣ
∂θl
∂η

=
∂ 2θl
∂η 2

(4.6)

and is subject to

η = 0 : θl = θh, (4.7a)

η → ∞ : θl → −1. (4.7b)

Finally, the Stefan condition becomes

(S + Sminθh)ḣ =
ksl
h

∂θs
∂ξ

∣∣∣∣
1−

− ∂θl
∂η

∣∣∣∣
0+
. (4.8)

We begin with the analysis of the small-time behaviour.
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4.1. Small-time solutions with S = O(1)

Since h ≪ κsl as t → 0, for fixed value of κsl, and ḣ ∼ 1 as t → 0, the
diffusive term in (4.3) dominates. Hence, the temperature in the solid is linear
to leading order in small t, which, together with the boundary conditions, yields

θs(ξ, t) ∼ −1 + [1 + θh(t)]ξ as t→ 0, (4.9)

with ξ fixed. In the liquid phase, we define a similarity variable

ζ ≡ η/t1/2, (4.10)

where η is given by (4.5), so that (4.6) becomes

t
∂θl
∂t

− t1/2ḣ
∂θl
∂ζ

− 1

2
ξ
∂θl
∂ζ

=
∂ 2θl
∂ζ 2

. (4.11)

The small-time limit suggests the temperature field of the form

θl(ζ, t) = −1 + tF (ζ, t), (4.12)

with F = O(1) as t → 0 and F → 0 as ζ → ∞. The prefactor t in the
second term on the right-hand side of (4.12) follows from the Stefan condition,
where the dominant balance as t → 0 is between the latent-heat release at the
interface and the conduction through the solid. This is in contrast with the
small-time solutions of the two-sided Stefan problem with thermally insulated
solid (Charach & Zaltzman [10]) and with those of the one-sided Stefan problem,
derived by Font et al. [14]. Those solutions had t1/2 as a prefactor in (4.12),
determined by the leading-order balance between the latent-heat release and
the conduction through the liquid. As a result we obtain a finite recalescence
rate as t → 0, which is in contrast with the problems mentioned above, where
it was O(t−1/2) as t→ 0. Inserting (4.12) into (4.6), we get

∂ 2F

∂ζ 2
+

1

2
ζ
∂F

∂ζ
− F = t

∂F

∂t
− t1/2ḣ

∂F

∂ζ
. (4.13)

The form of (4.13) implies the expansion

F (ζ, t) = F0(ζ) + t1/2F1(ζ) +O(t) as t→ 0. (4.14)

Consequently, we obtain

h ∼ t− 1

2
F0(0)t

2 − 2

5
F1(0)t

5/2, (4.15a)

θh ∼ −1 + F0(0)t+ F1(0)t
3/2 (4.15b)

as t → 0, where we have used (2.21a) and (4.12), together with (4.14). The
values of F0(0) and F1(0) are yet unknown. We express the Stefan condition,
using (4.9) and (4.14), as

(S + Sminθh)ḣ = ksl
1 + θh
h

− t1/2F ′(0, t). (4.16)
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Inserting (4.14) into (4.13), we obtain a sequence of ordinary differential equa-
tions, together with corresponding boundary conditions. For the purpose of the
present study, we will solve only for F0. At O(t

0) we obtain

F ′′
0 + 1

2ζF
′
0 − F0 = 0, (4.17)

subject to

ζ = 0 : F0 = F0(0), (4.18a)

ζ → ∞ : F0 → 0. (4.18b)

Plugging (4.15a, b) into (4.16), we obtain at O(t0) and O(t1/2), respectively,

F0(0) = (S − Smin)/ksl and F1(0) = F ′
0(0)/ksl. (4.19a, b)

The equation (4.17) can be solved in terms of the repeated integrals of the
complementary error function (Boisvert et al. [17], p. 167). The solution reads

F0(ζ) = k−1
sl (S − Smin)

[
(1 + 1

2ζ
2) erfc(ζ/2)− 1

π1/2 ζ e
−ζ2/4

]
, (4.20)

where we have used (4.19a) and erfc is the complementary error function. Using
(4.20) and (4.19b) we determine F1(0), so that

h ∼ t− S − Smin

ksl

(
1

2
t2 − 4

5π1/2ksl
t5/2

)
, (4.21a)

θh ∼ −1 +
S − Smin

ksl

(
t− 2

π1/2ksl
t3/2

)
. (4.21b)

Note that the above approximations apply as long as

t≪ ksl/(S − Smin), (4.22)

which constraints the validity of the small-time solutions considerably when S
is large. However, the small-time solutions provide useful information about the
behaviour of the system at the beginning of the solidification, e.g. we obtain
the initial recalescence rate as

θ̇h(0) = (S − Smin)/ksl, (4.23)

which is an exact result, valid for all S ≥ Smin. The unbounded value of
θ̇h(0) as S → ∞ indicates that the recalescence occurs infinitely fast. On the
other hand, as S → Smin, the effective latent heat vanishes so that the system
solidifies isothermally at constant rate ḣ = 1 and with θs ≡ θl ≡ −1.

4.2. Asymptotic solutions as S → ∞
The singularity of the small-time limit as S → ∞ suggests that the full prob-

lem, given by (2.21a), (4.3), (4.11) and (4.8), should be treated as a boundary-
layer one in the time variable, with the boundary layer of thickness 1/S as
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S → ∞, located at t = 0. The existence of the boundary layer can be inferred
also from the fact that the formal application of the limit S → ∞, with t fixed,
in (2.21a) and (4.8) results in ḣ = 0 and θh = 0 to leading order. Hence the
boundary layer is needed in order to satisfy the initial condition θh(0) = −1.
To solve the boundary-layer problem systematically, we employ the method
of matched asymptotic expansions (Lagerstrom & Casten [18]). The idea of
the method lies in seeking for the solutions in two special asymptotic limits as
S → ∞: the inner limit, corresponding to t ≪ 1, and the outer limit, corre-
sponding to t = O(1). Finally, the asymptotic solutions valid uniformly for all
t are constructed by a consistent matching of the inner and outer solutions.

4.2.1. Inner solutions – recalescence stage

We define the inner time variable via the following relation

t = τ/S , τ = O(1) as S → ∞, (4.24)

together with the condition ζ = O(1) as S → ∞. The inner time scale cor-
responds to the recalescence stage of solidification, during which θh = O(1).
Hence, the kinetic law (2.21a) implies the following scaling of the interface po-
sition

hin(τ) ≡ h(τ/S ) = S −1ν(τ), (4.25)

with ν = O(1) as S → ∞. The temperature in the liquid and the interface
temperature, respectively, in the inner limit are defined as follows

ϑ(ζ, τ) ≡ θl(ζ, τ/S ) and ϑh(τ) ≡ θh(τ/S ), (4.26a, b)

with ϑ and ϑh = O(1) as S → ∞. With the above scalings the kinetic equation
becomes

ν̇ = −ϑh, (4.27)

where the dot denotes differentiation with respect to τ . In the solid phase, the
linear profile (4.9) is a consistent leading-order approximation in the inner limit.
The scaling of (4.11) suggests the following expansion

ϑ ∼ ϑ0 + (1/S )1/2ϑ1. (4.28)

Consequently,

ϑh ∼ ϑ0h + (1/S )1/2ϑ1h, (4.29a)

ν ∼ ν0 + (1/S )1/2ν1. (4.29b)

At leading order, (4.11), (4.25) and (4.26a, b) imply

τ
∂ϑ0
∂τ

− 1

2
ζ
∂ϑ0
∂ζ

=
∂ 2ϑ0
∂ζ 2

, (4.30)

which is subject to

ζ = 0 : ϑ0 = ϑ0h, (4.31a)
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ζ → ∞ : ϑ0 → −1, (4.31b)

t = 0 : ϑ0 ≡ −1. (4.31c)

In the Stefan condition, the leading-order balance is between the latent-heat
release and the heat flow through the solid. Therefore, the Stefan condition and
the kinetic equation, respectively, yield

ν̇0 = ksl
1 + ϑ0h
ν0

, and ν̇0 = −ϑ0h, (4.32a, b)

subject to the initial conditions ν0(0) = 0 and ϑ0h(0) = −1. The above equations
admit the solutions

ν0(τ) = ksl

[(
2τ

ksl
+ 1

)1/2

− 1

]
, (4.33a)

ϑ0h(τ) = −
(
2τ

ksl
+ 1

)−1/2

. (4.33b)

The solution (4.33b) is used to solve for ϑ0, given by the leading-order problem
(4.30) and (4.31), by the application of the Duhamel’s theorem (see Appendix A).
The solution can be expressed as

ϑ0(ζ, τ) = − erf (ζ/2) + ϑ0h(τ) e
−ζ2/4R[ϑ0h(τ)ζ], (4.34)

where
R(y) ≡ ey

2/4 erfc (|y|/2) . (4.35)

Note that R(0) = 1 and R(∞) = 0.

4.2.2. Outer solutions – post-recalescence stage

In order to derive the outer solutions, we take t = O(1) as S → ∞, with
ζ = O(1). Physically, the outer solutions correspond to the post-recalescence
stage, during which the interface is close to the equilibrium so that θh ≪ 1,
yet the thickness of the solid region is still small. The dominant balance in the
Stefan condition is again between the latent-heat release and the heat conduction
through the solid. Hence, the leading-order interface temperature scales as

θouth ∼ S −1/2θ0h, (4.36)

with θ0h = O(1) as S → ∞. The kinetic law (2.21a) implies that

hout ∼ S −1/2h0, (4.37)

with h0 = O(1) as S → ∞. Since hout ≪ 1, the temperature profile in the solid
is quasi-steady to leading order, given by

θouts ∼ ξ − 1. (4.38)
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The heat conduction in the liquid, given by (4.11), together with (4.37), imply

θoutl ∼ θ0 + S −1/2θ1, (4.39)

with θ0,1 = O(1) as S → ∞. Inserting (4.39) and (4.37) into (4.11), we obtain
at leading order

t
∂θ0
∂t

− 1

2
ζ
∂θ0
∂ζ

=
∂ 2θ0
∂ζ 2

, (4.40)

subject to the following boundary conditions

ζ = 0 : θ0 = 0, (4.41a)

ζ → ∞ : θ0 → −1. (4.41b)

The condition (4.41a) has been imposed in order that (4.39), expressed at ζ = 0,
be consistent with (4.36), so that θ0h(t) = θ1(0, t). At leading order, the Stefan
condition yields

ḣ0 = ksl/h0, (4.42)

with general solution h0 = (2kslt+a)
1/2, where a is a constant to be determined

by asymptotic matching.

4.2.3. Asymptotic matching

The initial condition for θ0 must be specified so that the outer and inner
solutions match to leading order in an overlap region S −1 ≪ t ≪ 1. The
matching requires

θ0(ζ, 0) = ϑ0(ζ,∞) = − erf (ζ/2) (4.43)

and a = 0. However, since the function − erf (ζ/2) is already a time-independent
solution of (4.40) satisfying (4.41a, b), the outer solutions are simply

hout(t) ∼ (2kslt/S )1/2 and θouth (t) ∼ −(2S t/ksl)
−1/2. (4.44a, b)

Finally, the uniformly valid, leading-order solutions are obtained by adding the
inner and outer solutions and subtracting their common values in the overlap
region. In the present case, the overlap values coincide with the outer solutions
so that the composite solutions are identical with the inner ones. Thus, we
obtain the leading-order, uniformly valid temperature field

θl(ζ, t) ∼ − erf (ζ/2) + θh(t) e
−ζ2/4R[θh(t)ζ], (4.45)

with the function R defined in (4.35) and the leading-order interface temperature
and position, respectively,

h(t) ∼ ksl
S

[(
2S t

ksl
+ 1

)1/2

− 1

]
, (4.46a)

θh(t) ∼ −
(
2S t

ksl
+ 1

)−1/2

, (4.46b)
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as S → ∞.
Large-time analysis of the governing equations confirms that the outer so-

lutions are identical with the leading-order, large-time solutions when S > 1,
similarly as in the one-sided Stefan problem (Davis [5]). We shall not provide
further details here and note only that the large-time analysis can be provided
by introduction of a small, artificial parameter ε and by rescaling t = τ/ε with
τ = O(1) as ε→ 0 (Lagerstrom & Casten [18]).

4.3. Asymptotic solutions for S < 1

The latent-heat release is weak when the system is initially hypercooled. For
S = Smin, there is no latent heat that would cause temperature rise from the
initial value. Hence, θs ∼ −1, θl ∼ −1, θh ∼ −1 and h ∼ t as S → Smin; see
also the discussion after (4.23). The next terms in the expansions are O(S −
Smin) and can be sought for only numerically. However, useful information can
be taken from the large-time solutions for finite values of S −Smin. For the one-
sided, kinetically supercooled Stefan problem on a semi-infinite domain, there
exists a traveling-wave temperature profile in the liquid as t→ ∞ when S < 1
(Davis [5]). The same is true for the two-sided problem with thermally insulated
solid, studied by Charach & Zaltzman [10], where the solid was isothermal for
large times. We shall show that the travelling-wave profile develops also in the
present case. However, there is a new feature concerning the temperature in
the solid, which is almost constant, equal to θh, except to a boundary layer of
thickness (4κslt)

1/2 at the bottom of the solid.
To leading order, we assume

h ∼ V t and θh ∼ −V, (4.47a, b)

as t → ∞, where V is a constant to be determined. On introducing the large-
time scaling t = τ/ε, with τ = O(1) as ε → 0 in (4.3), we obtain, for ξ = O(1)
and θh = O(1), constant leading-order temperature θs ≡ θh as ε→ 0. Therefore,
there must be a boundary layer at ξ = 0, in which the temperature changes
from −1 to θh. The heat diffusion enters the dominant balance in (4.3) when
ξ = O(ε1/2). Therefore, we seek for a similarity solution θs = θs(ξ̄) with
ξ = ξ̄/t1/2 and ξ̄ = O(1) as t → ∞. From (4.3), we obtain the ordinary
differential equation

θ′′s + (V 2/2κsl)ξ̄θ
′
s = 0, (4.48)

where the primes denote the derivatives with respect to ξ̄, which is subject to

θs(0) = −1 and θs(∞) = θh. (4.49a, b)

The boundary condition as ξ̄ → ∞ ensures matching with the constant outer
solution, valid for ξ = O(1) as t→ ∞. The temperature in the liquid, given by
(4.6), has the travelling-wave profile similar to that in the one-sided, kinetically
supercooled Stefan problem (Davis [5]). Thus we obtain

θs(z, t) ∼ −1 +
S − Smin

1− Smin
erf[z/(4κslt)

1/2], (4.50a)
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θl(z, t) ∼ −1 +
S − Smin

1− Smin
e−V (z−h), (4.50b)

as t→ ∞, where we have expressed the solutions using the variable z in order to
highlight the spatial and temporal dependence of solutions. The solidification
rate,

V = 1− S − Smin

1− Smin
, (4.51)

follows from the Stefan condition and is the same as that in the one-sided
supercooled Stefan problem (see Charach & Zaltzman [10]). The dominant
balance in the Stefan condition, to leading order in t, is between the latent-heat
release and the conduction through the liquid; the conduction through the solid
is O(t−1/2) as t → ∞. This contrasts with the case when S > 1. Note that
(4.50a) satisfies the interface boundary condition with an exponentially small
error as t→ ∞.

5. Asymptotics: finite domain

At times when the finite extent becomes relevant, we use thermal scaling.
All the solutions of section 4, derived in the kinetic scaling can be expressed
in the thermal one, in accordance with (2.12a, b), by the change of variables
z 7→ Gz, h 7→ Gh and t 7→ G2t. The variables ξ and ζ, defined in (3.1) and
(4.10), respectively, are invariant with respect to the above change of variables.

When the liquid is finite, the asymptotic solutions of section 4, derived
originally for the semi-infinite region, apply as long as t < t∞. In order to
estimate t∞, we consider the liquid as effectively semi-infinite as long as the
temperature increase at the upper liquid boundary, given by θl[(1−h)/t1/2, t]+1,
is less than some small factor, say δ, times the total temperature variation across
the liquid, θh + 1. When S → ∞, we obtain, using (4.45),

t∞ ∼ 1
4 [erfc

−1(δ)]−2 ≈ 0.08 (5.1)

to leading order, where we set δ = 10−2. In the kinetic scaling, the above
relation implies t∞ = O(G2) ≫ 1 as G → ∞. When S ∈ (Smin, 1), (4.50b)
implies

t∞ = 1/GV − ln(1/δ)/G2V 2 ≈ 1/GV − 4.6/G2V 2, (5.2)

with δ = O(10−2). In the kinetic scaling, t∞ = O(G/V ) ≫ 1 as G → ∞.
Hence, when G is large enough, the solutions have enough time to evolve close
to their large-time asymptotics, derived in section 4.3, before the finite extent of
the liquid comes into effect. This is confirmed also by the numerical solutions,
shown in figure 3.1(b). The rest of this section is devoted to the asymptotic
results explaining some of the features of the numerical results of section 3.
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5.1. Asymptotics as S → ∞
The asymptotic solutions in the semi-infinite domain, given in (4.46a, b),

expressed in the thermal scaling, become

h ∼ ksl
GS

[(
2G2S t

ksl
+ 1

)1/2

− 1

]
, (5.3a)

θh ∼ −
(
2G2S t

ksl
+ 1

)−1/2

(5.3b)

as S → ∞. The typical recalescence time, trec, is O(G−2S −1) as S → ∞.

5.1.1. Relaxation towards the quasi-steady stage for t ≪ S

In order to obtain consistent scalings as S → ∞, we assume that the heat
conduction towards the liquid in the Stefan condition (3.3) is O(1). For t≪ S ,
the dominant balance is S ḣ = ksl/h. Hence, the solutions (4.44a, b), derived
originally in the effectively semi-infinite liquid, still apply, even though the finite
extent of the liquid has come into effect. Expressed in the thermal scaling, these
solutions read

h ∼ (2kslt/S )1/2 and θh ∼ −(2G2S t/ksl)
−1/2 (5.4a, b)

as S → ∞ with t≪ S .
In the liquid, times t = O(1) correspond to the diffusion-driven relaxation

towards the quasi-steady state, as follows from (3.2b) and (5.4a, b). For 1 ≪
t ≪ S , the temperature in the liquid becomes quasi-steady, so that θl ∼ ξ − 1
to leading order. At t = O(S ), the conduction towards the liquid enters the
dominant balance in the Stefan condition (3.3), in which case all terms therein
are O(1) and quasi-steady, with h = O(1) and θh = O(S −1). This quasi-steady
stage deserves further investigation.

5.1.2. Quasi-steady stage for t = O(S )

The quasi-steady stage can be analysed by introducing the scaling t = S t̄,
with t̄ = O(1). The Stefan condition yields, to leading order,

ḣ =
ksl
h

+
1

1− h
≡ ψ(h) as S → ∞. (5.5)

Note that (5.5) is valid until times such that tf − t ≫ δterm, with δterm ≪ S ,
where δterm denotes the length of the terminal stage of solidification. Though
(5.5) has been derived for t = O(S ) as S → ∞, it matches with the solution
(5.4a) for t ≪ S , thus implying consistent initial condition h(0) = 0. Hence,
the solution of (5.5) is given by the implicit relation

ksl
(ksl − 1)3

ln

∣∣∣∣
(
1− 1

ksl

)
h− 1

∣∣∣∣+
1

2

h2

ksl − 1
+

h

(ksl − 1)2
=

t

S
(5.6)
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Figure 5.1: a) The values of the complete-freezing time, tf , obtained from the
numerical solutions of the full problem, as functions of S , for different values of G:
G = 5 (blue), G = 10 (red) and G = 100 (yellow). The black dashed line represents
the leading-order value of tf as S → ∞, given in (5.8). b) The minimum interfacial
supercooling, θ∗h, as a function of Stefan number, S , for the values of G as in a), with
the same colours: the solid curves correspond to the numerical results from the full
problem and the dashed ones to the asymptotic results for θ∗h as S → ∞, given in
(5.11). For S < 1 we plot the limiting value of θ∗h as G → ∞ (black dotted line), given
in (5.16). In all the calculations we have set ksl = 1 and Smin = 0.

for ksl 6= 1. For ksl = 1, the above equation becomes

h2/2− h3/3 = t/S . (5.7)

Note that h is continuous at ksl = 1. In figure 3.2(a) we compare the numerical
solution of (5.6) with the numerical solution of the full problem from section 3.
Note a very good agreement of the solutions except at early and terminal stages,
where the quasi-steady formulation has h = O(t1/2) and the full problem has
h = O(t) as t→ 0 or tf .

Though (5.6) does not have an explicit solution, it can be used to derive an
explicit formula for the time of complete freezing by setting h(tf ) = 1. In this
way, we obtain

tf = S t̄f +O(1) as S → ∞, (5.8)

where

t̄f =





k2sl − 2ksl ln ksl − 1

2(ksl − 1)3
, for ksl 6= 1

1/6, for ksl = 1.

(5.9)

Note that t̄f decreases monotonically with ksl, and that t̄f → 1/2 as ksl → 0
and t̄f → 0 as ksl → ∞. Also note that tf is independent of G to leading order
in S . In figure 5.1(a) we plot tf , given in (5.8), together with tf obtained
from the numerical solutions of the full problem, as functions of S , for different
values of G. Note that the leading-order value of tf is accurate even for finite
values of S > 1.

As suggested by the numerical solutions in figure 3.2(b), there is a maxi-
mum of θh, corresponding to the minimum dynamical interfacial supercooling.
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From (2.21b) and (5.5) we obtain the interface temperature as a function of the
interface position, i.e. θh = −ψ(h)/GS to leading order as S → ∞, with the
function ψ defined in (5.5). Hence, θh attains maximum at h = h∗, where

h∗ = k
1/2
sl /(1 + k

1/2
sl ), (5.10)

and the value of the maximum is

θ∗h ∼ −(1 + k
1/2
sl )2/GS as S → ∞. (5.11)

We denote t∗ the time at which θh(t
∗) = θ∗h. Moreover, since θ̇h(t

∗) = 0, the

kinetic law (2.21b) implies that ḧ(t∗) = 0. Hence the Taylor approximation at
t = t∗ of the leading-order interface position is

h(t) ≈ h∗ + (1 + k
1/2
sl )2(t− t∗)/S , (5.12)

with the next term being O[(t− t∗)/S ]3. The Taylor expansion of θh at t = t∗,
obtained by inserting (5.12) into (5.5), is

θh(t) ≈ − (1 + k
1/2
sl )2

GS

[
1 +

(1 + k
1/2
sl )6

3k
1/2
sl

(
t− t∗

S

)2
]
. (5.13)

Thus we see that for times such that |t − t∗| ≪ S there is a stage of slow
solidification with

ḣ ≈ (1 + k
1/2
sl )2/S (5.14)

and h ≈ h∗ = O(1), with h∗ given in (5.10). During this stage, the interface
is close to equilibrium so that θh ≈ θ∗h, with θ∗h given in (5.11), the interface
temperature forming the plateau visible in figure 3.2(b). The values of θ∗h,
obtained numerically, are plotted in figure 5.1(b) for various values of G, together
with the asymptotic solution (5.11).

5.2. Asymptotics for Smin < S < 1

Though the asymptotic solutions as S → Smin cannot be sought explicitly,
as was the case for large S , we obtain useful information from the leading order
solution h ∼ Gt as S → Smin. In particular, we get

tf = 1/G +O(S − Smin) as S → Smin. (5.15)

For Smin < S < 1, the numerical results shown in figure 5.1(b) suggest that
θ∗h tends to a finite limit as G → ∞, with S fixed. This limit is given by the
large-time, travelling-wave asymptotics, derived in section 4.3 in a semi-infinite
liquid:

θ∗h ∼ −1 +
S − Smin

1− Smin
as G → ∞. (5.16)

To explain (5.16), we remind the reader of the discussion after (5.2): as G → ∞,
the solution has enough time to converge towards its large-time asymptotics
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before the finite extent of the liquid becomes important. This is clearly illus-
trated in figure 3.1(b): the temperature profiles, describing the intermediate
stage of solidification, obtained as the numerical solutions of the full problem,
are in agreement with the travelling-wave asymptotics, given in (4.50a, b), with
V replaced by GV due to the thermal scaling. The solidification rate in this
stage is ḣ ∼ GV , with V defined in (4.51), as demonstrated in figure 3.3(a).

6. Discussion and concluding remarks

We have addressed the problem of solidification of a kinetically-supercooled
liquid on a finite domain with fixed temperature at the boundaries. One conse-
quence of such a configuration is a finite complete-freezing time. Another one
is the quasi-steady, hence linear, temperature profile during the early stages of
solidification. The persistence of the quasi-steady temperature in the solid at
later times was found to be strongly influenced by the strength of the latent-heat
release. For large Stefan numbers, the temperature in the solid is quasi-steady
all the time until the rapid, terminal stage of solidification. On the other hand,
in a hypercooled system in which the Stefan number is less than unity, the
temperature in the solid develops a constant profile equal to the interface tem-
perature through the whole solid except to a thermal boundary layer of thickness
(4κslt)

1/2 at the solid bottom, where t is the dimensionless time scaled on the
attachment kinetics timescale.

The novel results of section 4 are related to the incorporation of the solid
phase in the two-sided model. In particular, the presence of the solid phase,
coupled with the fixed-temperature boundary conditions, allows for the deriva-
tion of the solutions at large Stefan numbers, as given in (4.45) and (4.46a, b).
The analytical progress hinged on decoupling of the equations governing the
evolution of h, θh and θl as the liquid interfacial thermal gradient did not enter
the Stefan condition.

The second term on the right-hand side of (4.45) represents the effect of
recalescence on the temperature distribution. In thermal scaling, which is a
natural scaling from the experimental point of view, the effect of recalescence is
of order unity for t ∼ G−2S −1 while it vanishes for t ≫ G−2S −1 as S → ∞,
where t is scaled on the thermal diffusion timescale. At these later times, the
leading-order solutions are identical to the classical Neumann solutions that
would be obtained for S → ∞ if the latent-heat release was effectively instan-
taneous and the linear kinetic law was replaced by a jump condition

θh =




−1, for t = 0,

0, for t > 0.

(6.1)

An unbounded temperature gradient in the solid at t → 0, implied by (6.1),
is consistent with the result of the short-time analysis of section 4.1 that the
temperature gradient in the solid at t = 0 is equal to S /ksl as S → ∞. The
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Water Copper Salol

ḣ(0)/m s−1 4.66×10−3 1.31 3.32×10−5

ḣ(t∗)/m s−1 7.57×10−7 3.16×10−4 4.78×10−7

h∗/m 6.7×10−2 6.1×10−2 5.8×10−2

trec/s 3.86×10−4 2.72×10−6 7.67
tf/s 8.61×104 2.09×102 1.39×105

Table 2: Values of various dimensional quantities for the material systems listed in
table 1: ḣ(0) is the initial solidification rate; ḣ(t∗) and h∗ is the solidification rate and
the interface position during the quasi-steady stage; trec is the typical recalescence
time and tf is the complete-freezing time.

condition (6.1) is also consistent with the small-time behaviour of the quasi-
steady interface position given by (5.5). In this view, (5.5) could be interpreted
as an intermediate asymptotics for the full problem as it describes the behaviour
at times when the precise details of the initial behaviour, given by the inner
solutions (4.45) and (4.46a, b), cease to affect the evolution of the system (see
Barenblatt [19]).

In the quasi-steady regime, when the latent heat dominates the sensible heat,
the interface temperature is close to the equilibrium solidification temperature
and the solidification rate is constant to leading order. In dimensional terms,
(5.11) implies

Tm − T ∗
h ∼ (k

1/2
s + k

1/2
l )2∆T

ρLmGH
, (6.2)

where T ∗
h is the maximum interfacial temperature attained during the course of

solidification. The dimensional solidification rate is

ḣ ≈ ḣ(t∗) =
(k

1/2
s + k

1/2
l )2∆T

ρLmH
, (6.3)

These results indicate that during the quasi-stationary stage the deviation from
the thermodynamic equilibrium and the solidification rate both decrease with
the size of the system. This is because the large values of H reduce the diffusive
flux of latent heat away from the interface, promoting the temperature rise
there. The values of various dimensional quantities for water, copper and salol
are presented in table 2. The data show that the typical recalescence time is
very short for water and copper, while it is considerably longer for salol, making
it a suitable candidate for potential experimental validation of our results.

In the hypercooled case, we have shown that the large-time solutions derived
originally in the semi-infinite domain apply also in the finite domain during the
intermediate stage of solidification provided G is large, i.e. when there is a
separation of kinetic and thermal scales. The interface temperature during this
stage can be approximated by the maximum interface temperature, which in
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dimensional terms reads

Th ≈ T ∗
h ≡ Ti +

Lm

Cps
−
(
Cpl

Cps
− 1

)
∆T, (6.4)

as derived from (5.16). It is worth noting that the same value is obtained during
equilibration to a steady state in the finite-size thermally-insulated system, a
result that is readily derived via energy conservation (see Alexiades & Solomon
[20], section 2.4.E).
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Appendix A. Derivation of the leading-order temperature profile in
the recalescence stage for t = O(1/S ) as S → ∞

In order to solve the leading-order system (4.30) and (4.31a–c), we transform
(4.30), using the variable η = t1/2ζ, into a simple heat equation of the form

∂g

∂τ
=
∂ 2g

∂η 2
, (A.1)

which is subject to

η = 0 : g = 1 + ϑ0h, (A.2a)

η → ∞ : g → 0, (A.2b)

t = 0 : g = 0, (A.2c)

with g ≡ 1+ ϑ0 and the function ϑ0h is given by (4.33b). The above system can
be solved using the Duhamel’s theorem (see Carslaw & Jaeger [21], section 2.5),
to yield

g(η, τ) = erfc(η/2τ1/2) +
2

π1/2

∫ ∞

η
2τ1/2

ϑ0h

(
τ − η2

4y2

)
e−y2

dy. (A.3)

The second term on the right-hand side of the above equation is expressed with
the help of the identity

ϑ0h

(
τ − η2

4y2

)
= ϑ0h(τ)

(
y2 − ζ2[ϑ0h(τ)]

2

2ksl

)−1/2

y, (A.4)

and then by the application of the substitution from y to u

u ≡
(
y2 − ζ2[ϑ0h(τ)]

2

2ksl

)1/2

. (A.5)

Thus we obtain, using the definition of the function g, the relationship (4.34).
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